Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 8, pp 1611–1619 | Cite as

Catalytic conversion of 1,1,1,2-tetrafluoroethane (HFC-134a)

  • Tae Uk Han
  • Beom-Sik Yoo
  • Young-Min Kim
  • ByeongAh Hwang
  • Gamal Luckman Sudibya
  • Young-Kwon Park
  • Seungdo Kim
Catalysis, Reaction Engineering
  • 55 Downloads

Abstract

We examined the conversion of HFC-134a over five catalysts, Na2CO3, CaO, CaCO3, and two types of γ-Al2O3 with different surface areas, between 300 and 600 °C. HFC-134a was barely converted via the non-catalytic reaction, even at the highest temperature (600 °C). The operating temperatures for the catalytic conversion of HFC-134a were reduced dramatically and its efficiency increased with increasing temperature. Among the catalysts used, γ-Al2O3 with the larger surface area showed the highest conversion rate of HFC-134a, which was followed, in order, by γ-Al2O3 with the smaller surface area, CaCO3, CaO, and Na2CO3. The conversion rate of γ-Al2O3 decreased rapidly due to catalyst deactivation. The catalytic efficiency of γ-Al2O3 was maintained for a longer period by water addition. Water acted as a hydrogen donor for the dehydrofluorination reaction.

Keywords

HFC-134a Catalytic Conversion γ-Al2O3 Reaction Pathways Hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_51_MOESM1_ESM.pdf (52 kb)
Catalytic conversion of 1,1,1,2-tetrafluoroethane (HFC-134a)

References

  1. 1.
    Z. Hausfather, K. Cowtan, D. C. Clarke, P. Jacobs, M. Richardson and R. Rohde, Sci. Adv., 3, 1 (2017).CrossRefGoogle Scholar
  2. 2.
    United Nations Framework Convention on Climate Change–The Paris Agreement. http://unfccc.int/paris_agreement/items/9485.php (Accessed 05.11.2017).
  3. 3.
    Montreal Protocol–Achievements to Date and Challenges Ahead. http://ozone.unep.org/en/focus/montreal-protocol-achievementsdate-and-challenges-ahead (Accessed 05.11.2017).
  4. 4.
    UNFCCC 1998. The Kyoto Protocol to the United Nations Framework Convention on Climate Change. https://unfccc.int/resource/docs/convkp/kpeng.pdf (Accessed at 17.11.2017).
  5. 5.
    UNEP 2011. HFCs: A Critical Link in Protecting Climate and the Ozone Layer. United Nations Environment Programme (UNEP). http://www.unenvironment.org/resources/report/hfcs-critical-linkprotecting-climate-and-ozone-layer (Accessed at 05.11.2017).
  6. 6.
    Kigali Amendment to the Montreal Protocol. https://eia-international.org/wp-content/uploads/EIA-Kigali-Amendment-to-the-Montreal-Protocol-FINAL.pdf (Accessed 03.11.2017).
  7. 7.
    T. Mi, J. Han, X. He and L. Qin, Environ. Protect. Eng., 41, 143 (2015).Google Scholar
  8. 8.
    M. Ohno, Y. Ozawa and T. Ono, Int. J. Plasma Environ. Sci. Technol., 1, 159 (2007).Google Scholar
  9. 9.
    Y. S. Mok, V. Demidyuk and J. C. Whitehead, J. Phys. Chem. A, 112, 6586 (2008).CrossRefPubMedGoogle Scholar
  10. 10.
    M. Jasinski, M. Dors and J. Mizeraczyk, Plasma Chem. Plasma Process., 29, 363 (2009).CrossRefGoogle Scholar
  11. 11.
    Narengerile, H. Saito and T. Watanabe, Plasma Chem. Plasma Process., 30, 813 (2010).CrossRefGoogle Scholar
  12. 12.
    S.K. Kundu, E. M. Kennedy, J. C. Mackie, C. I. Holdsworth, T. S. Molloy, V.V. Gaikwad and B.Z. Dlugogorski, Chem. Eng. J., 284, 412 (2016).CrossRefGoogle Scholar
  13. 13.
    A. Iizuka, H. Ishizaki, A. Mizukoshi, M. Noguchi, A. Yamasaki and Y. Yanagisawa, Ind. Eng. Chem. Res., 50, 11808 (2011).CrossRefGoogle Scholar
  14. 14.
    Y. Takita, T. Tanabe, M. Ito, M. Ogura, T. Muraya, S. Yasuda, H. Nishiguchi and T. Ishihara, Ind. Eng. Chem. Res., 41, 2585 (2002).CrossRefGoogle Scholar
  15. 15.
    Decomposition of fluoroform (HFC-23) waste streams, https://cdm.unfccc.int/methodologies/PAmethodologies/approved (Accessed 05.11.2017).
  16. 16.
    W. Han, Y. Li, H. Tang and H. Liu, J. Fluorine Chem., 140, 7 (2012).CrossRefGoogle Scholar
  17. 17.
    W. Jia, Q. Wu, X. Lang, C. Hu, G. Zhao, J. Li and Z. Zhu, Catal. Lett., 145, 654 (2015).CrossRefGoogle Scholar
  18. 18.
    W. Jia, Q. Wu, X. Lang, C. Hu, G. Zhao, J. Li and Z. Zhu, Catal. Sci. Technol., 5, 3103 (2015).CrossRefGoogle Scholar
  19. 19.
    Y. Takita, M. Ninomiya, H. Miyake, H. Wakamatsu, Y. Yoshinaga and T. Ishihara, Phys. Chem. Chem. Phys., 1, 4501 (1999).CrossRefGoogle Scholar
  20. 20.
    Z.M. El-Bahy, R. Ohnishi and M. Ichikawa, Appl. Catal. B: Environ., 40, 81 (2003).CrossRefGoogle Scholar
  21. 21.
    Z.M. El-Bahy, R. Ohnishi and M. Ichikawa, Catal. Today, 90, 283 (2004).CrossRefGoogle Scholar
  22. 22.
    J.Y. Jeon, X.-F. Xu, M.H. Choi, H.Y. Kim and Y.-K. Park, Chem. Commun., 11, 1244 (2003).CrossRefGoogle Scholar
  23. 23.
    X.-F. Xu, J.Y. Jeon, M. H. Choi, H.Y. Kim, W. C. Choi and Y.-K. Park, J. Mol. Catal. A: Chem., 266, 131 (2007).CrossRefGoogle Scholar
  24. 24.
    E. Vileno, M. K. LeClair, S. L. Suib, M.B. Cutlip, F. S. Galasso and S. J. Hardwick, Chem. Mater, 7, 683 (1995).CrossRefGoogle Scholar
  25. 25.
    X. Niu, L. Sun, Y. Wang, H. Wu and X. Xu, J. Natural Gas Chem., 19, 463 (2010).CrossRefGoogle Scholar
  26. 26.
    X. Xu, L. Sun and Y. Wang, J. Natural Gas Chem., 20, 418 (2011).CrossRefGoogle Scholar
  27. 27.
    Y. S. Kim, N.-K. Park and T. J. Lee, Appl. Chem. Eng., 26, 154 (2015).CrossRefGoogle Scholar
  28. 28.
    Y. Wang, X. Xu, P. Sheng, H. Li, T. Wang, Y. Huang and F. Liu, J. Natural Gas Chem., 20, 457 (2011).CrossRefGoogle Scholar
  29. 29.
    N.-K. Park, H.-G. Park, T. J. Lee, W.-C. Chang and W.-T. Kwon, Catal. Today, 185, 247 (2012).CrossRefGoogle Scholar
  30. 30.
    W.B. Feaver and J.A. Rossin, Catal. Today, 54, 13 (1999).CrossRefGoogle Scholar
  31. 31.
    H. Onoda, T. Ohta, J. Tamaki and K. Kojima, Appl. Catal. A: Gen., 288, 98 (2005).CrossRefGoogle Scholar
  32. 32.
    W. Han, Y. Chen, B. Jin and H. Liu, Greenhouse Gas Sci Technol., 4, 121 (2014).CrossRefGoogle Scholar
  33. 33.
    M. S. Gandhi and Y. S. Mok, Int. J. Environ. Sci. Technol., 12, 499 (2015).CrossRefGoogle Scholar
  34. 34.
    S. Kowalak, React. Kinet. Catal. Lett., 19, 35 (1982).CrossRefGoogle Scholar
  35. 35.
    T. Skapin and E. Kemnitz, Catal. Lett., 40, 241 (1996).CrossRefGoogle Scholar
  36. 36.
    O. Boese, W.E. S. Unger, E. Kemnitz and S.L.M. Schroeder, Phys. Chem. Chem. Phys., 4, 2824 (2002).CrossRefGoogle Scholar
  37. 37.
    M.M. Farris, A. A. Klinghoffer, J. A. Rossin and D. E. Tevault, Catal. Today, 11, 501 (1992).CrossRefGoogle Scholar
  38. 38.
    K. Teinz, S. Wuttke, F. Borno, J. Eicher and E. Kemnitz, J. Catal., 282, 175 (2011).CrossRefGoogle Scholar
  39. 39.
    S. Karmakar and H. L. Greene, J. Catal., 151, 394 (1995).CrossRefGoogle Scholar
  40. 40.
    H.-G. Park, N.-K. Park, T. J. Lee, W.-C. Chang and W.-T. Kwon, Clean Technol., 18, 83 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Tae Uk Han
    • 1
  • Beom-Sik Yoo
    • 1
  • Young-Min Kim
    • 1
  • ByeongAh Hwang
    • 1
  • Gamal Luckman Sudibya
    • 1
  • Young-Kwon Park
    • 2
  • Seungdo Kim
    • 1
  1. 1.Department of Environmental Sciences and BiotechnologyHallym UniversityChuncheonKorea
  2. 2.School of Environmental EngineeringUniversity of SeoulSeoulKorea

Personalised recommendations