Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation
- 30 Downloads
Abstract
The electrochemical route is a promising and environmentally friendly technique for fabrication of metal organic frameworks (MOFs) due to mild synthesis condition, short time for crystal growth and ease of scale up. A microstructure Cu3(BTC)2 MOF was synthesized through electrochemical path and successfully employed for CO2 and CH4 adsorption. Characterization and structural investigation of the MOF was carried out by XRD, FE-SEM, TGA, FTIR and BET analyses. The highest amount of carbon dioxide and methane sorption was 26.89 and 6.63 wt%, respectively, at 298 K. The heat of adsorption for CO2 decreased monotonically, while an opposite trend was observed for CH4. The results also revealed that the selectivity of the developed MOF towards CO2 over CH4 enhanced with increase of pressure and composition of carbon dioxide component as predicted by the ideal adsorption solution theory (IAST). The regeneration of as-synthesized MOF was also studied in six consecutive cycles and no considerable reduction in CO2 adsorption capacity was observed.
Keywords
MOF Cu3(BTC)2 Electrochemical Synthesis CO2/CH4 Adsorption IASTPreview
Unable to display preview. Download preview PDF.
References
- 1.H. R. Abid, Z. H. Rada, J. Shang and S. Wang, Polyhedron (2016).Google Scholar
- 2.C. Stewart and M.-A. Hessami, Energy Convers. Manage., 46, 403 (2005).CrossRefGoogle Scholar
- 3.A. K. Adhikari and K.-S. Lin, Chem. Eng. J., 284, 1348 (2016).CrossRefGoogle Scholar
- 4.H. C. Yoon, P. B. S. Rallapalli, S. S. Han, H. T. Beum, T. S. Jung, D. W. Cho, M. Ko and J.-N. Kim, Korean J. Chem. Eng., 32, 2501 (2015).CrossRefGoogle Scholar
- 5.Y. He, W. Zhou, G. Qian and B. Chen, Chem. Soc. Rev., 43, 5657 (2014).CrossRefGoogle Scholar
- 6.M. G. Waller, E. D. Williams, S. W. Matteson and T. A. Trabold, Appl. Energy, 127, 55 (2014).CrossRefGoogle Scholar
- 7.S. Choi, J. H. Drese and C. W. Jones, ChemSusChem, 2, 796 (2009).CrossRefGoogle Scholar
- 8.X. Wang, L. Chen and Q. Guo, Chem. Eng. J., 260, 573 (2015).CrossRefGoogle Scholar
- 9.Y. Li, H. Yi, X. Tang, F. Li and Q. Yuan, Chem. Eng. J., 229, 50 (2013).CrossRefGoogle Scholar
- 10.L. Liu, D. Nicholson and S. K. Bhatia, J. Phys. Chem. C, 119, 407 (2014).CrossRefGoogle Scholar
- 11.H. Yi, F. Li, P. Ning, X. Tang, J. Peng, Y. Li and H. Deng, Chem. Eng. J., 215, 635 (2013).CrossRefGoogle Scholar
- 12.C. Shen, C. A. Grande, P. Li, J. Yu and A. E. Rodrigues, Chem. Eng. J., 160, 398 (2010).CrossRefGoogle Scholar
- 13.F. Raganati, V. Gargiulo, P. Ammendola, M. Alfe and R. Chirone, Chem. Eng. J., 239, 75 (2014).CrossRefGoogle Scholar
- 14.K. Munusamy, G. Sethia, D.V. Patil, P. B. S. Rallapalli, R. S. Somani and H. C. Bajaj, Chem. Eng. J., 195, 359 (2012).CrossRefGoogle Scholar
- 15.C. Janiak and J. K. Vieth, New J. Chem., 34, 2366 (2010).CrossRefGoogle Scholar
- 16.A. Martinez Joaristi, J. Juan-Alcañiz, P. Serra-Crespo, F. Kapteijn and J. Gascon, Cryst. Growth Des., 12, 3489 (2012).CrossRefGoogle Scholar
- 17.J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 38, 1213 (2009).CrossRefGoogle Scholar
- 18.H. Al-Kutubi, J. Gascon, E. J. Sudhölter and L. Rassaei, ChemElec-troChem, 2, 462 (2015).CrossRefGoogle Scholar
- 19.D.-W. Jung, D.-A. Yang, J. Kim, J. Kim and W.-S. Ahn, Dalton Trans., 39, 2883 (2010).CrossRefGoogle Scholar
- 20.Z. Ni and R. I. Masel, J. Am Chem. Soc., 128, 12394 (2006).CrossRefGoogle Scholar
- 21.S. Khazalpour, V. Safarifard, A. Morsali and D. Nematollahi, RSC Adv., 5, 36547 (2015).CrossRefGoogle Scholar
- 22.R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B. F. Sels and D. E. De Vos, Chem. Mater., 21, 2580 (2009).CrossRefGoogle Scholar
- 23.A. U. Czaja, N. Trukhan and U. Müller, Chem. Soc. Rev., 38, 1284 (2009).CrossRefGoogle Scholar
- 24.S. S.-Y. Chui, S. M.-F. Lo, J. P. Charmant, A. G. Orpen and I. D. Williams, Science, 283, 1148 (1999).CrossRefGoogle Scholar
- 25.K. Schlichte, T. Kratzke and S. Kaskel, Micropor. Mesopor. Mater., 73, 81 (2004).CrossRefGoogle Scholar
- 26.M. Gaab, N. Trukhan, S. Maurer, R. Gummaraju and U. Müller, Micropor. Mesopor. Mater., 157, 131 (2012).CrossRefGoogle Scholar
- 27.P. Silva, S. M. Vilela, J. P. Tomé and F. A. A. Paz, Chem. Soc. Rev., 44, 6774 (2015).CrossRefGoogle Scholar
- 28.A. Grondein and D. Bélanger, Fuel, 90, 2684 (2011).CrossRefGoogle Scholar
- 29.S. Khoshhal, A. A. Ghoreyshi, M. Jahanshahi and M. Mohammadi, RSC Adv., 5, 24758 (2015).CrossRefGoogle Scholar
- 30.B. Sun, S. Kayal and A. Chakraborty, Energy, 76, 419 (2014).CrossRefGoogle Scholar
- 31.T. M. Letcher, Thermodynamics, solubility and environmental issues, Elsevier (2007).Google Scholar
- 32.B. Wu, Y. Zhang and H. Wang, J. Phys. Chem. B, 113, 12332 (2009).CrossRefGoogle Scholar
- 33.W. Caminati, S. Melandri, A. Maris and P. Ottaviani, Angew. Chem. Int. Ed., 45, 2438 (2006).CrossRefGoogle Scholar
- 34.M. Hartmann, S. Kunz, D. Himsl, O. Tangermann, S. Ernst and A. Wagener, Langmuir, 24, 8634 (2008).CrossRefGoogle Scholar
- 35.J. Li, J. Yang, L. Li and J. Li, J. Energy Chem., 23, 453 (2014).CrossRefGoogle Scholar
- 36.F. Martínez, R. Sanz, G. Orcajo, D. Briones and V. Yángüez, Chem. Eng. Sci., 142, 55 (2016).CrossRefGoogle Scholar
- 37.S. Bhadauria, A. Nanoti, S. Dasgupta, S. Divekar, P. Gupta and R. Chauhan, RSC Adv., 6, 93003 (2016).CrossRefGoogle Scholar
- 38.S. Salehi and M. Anbia, Energy Fuels, 31, 5376 (2017).CrossRefGoogle Scholar
- 39.N. Al-Janabi, P. Hill, L. Torrente-Murciano, A. Garforth, P. Gorgojo, F. Siperstein and X. Fan, Chem. Eng. J., 281, 669 (2015).CrossRefGoogle Scholar
- 40.M. Schlesinger, S. Schulze, M. Hietschold and M. Mehring, Micropor. Mesopor. Mater., 132, 121 (2010).CrossRefGoogle Scholar
- 41.R. S. Kumar, S. S. Kumar and M.A. Kulandainathan, Micropor. Mesopor. Mater., 168, 57 (2013).CrossRefGoogle Scholar
- 42.I. Ardelean and S. Cora, J. Mater. Sci.: Mater. Electronics, 19, 584 (2008).Google Scholar
- 43.F. Banisheykholeslami, A. A. Ghoreyshi, M. Mohammadi and K. Pirzadeh, CLEAN-Soil, Air, Water, 43, 1084 (2015).CrossRefGoogle Scholar
- 44.H. Wu, J. M. Simmons, G. Srinivas, W. Zhou and T. Yildirim, J. Phys. Chem. Lett., 1, 1946 (2010).CrossRefGoogle Scholar
- 45.G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthes and M. Krimissa, Appl. Geochem., 22, 249 (2007).CrossRefGoogle Scholar
- 46.C. Zhu, Z. Zhang, B. Wang, Y. Chen, H. Wang, X. Chen, H. Zhang, N. Sun, W. Wei and Y. Sun, Micropor. Mesopor. Mater., 226, 476 (2016).CrossRefGoogle Scholar
- 47.Z. H. Rada, H.R. Abid, J. Shang, Y. He, P. Webley, S. Liu, H. Sun and S. Wang, Fuel, 160, 318 (2015).CrossRefGoogle Scholar
- 48.H. R. Abid, Z. H. Rada, J. Shang and S. Wang, Polyhedron, 120, 103 (2016).CrossRefGoogle Scholar
- 49.J. Du and G. Zou, Inorg. Chem. Commun., 69, 20 (2016).CrossRefGoogle Scholar
- 50.H. Qiu, L. Lv, B.-c. Pan, Q.-j. Zhang, W.-m. Zhang and Q.-x. Zhang, J. Zhejiang University-Science A, 10, 716 (2009).CrossRefGoogle Scholar
- 51.N. Lazaridis and D. Asouhidou, Water Res., 37, 2875 (2003).CrossRefGoogle Scholar
- 52.E. Mehrvarz, A. A. Ghoreyshi and M. Jahanshahi, Front. Chem. Sci. Eng., 11, 252 (2017).CrossRefGoogle Scholar
- 53.I. Prasetyo and D. Do, Chem. Eng. Sci., 53, 3459 (1998).CrossRefGoogle Scholar
- 54.S. Chowdhury and R. Balasubramanian, J. CO2 Util., 13, 50 (2016).CrossRefGoogle Scholar
- 55.Z. Bao, L. Yu, Q. Ren, X. Lu and S. Deng, J. Colloid Interface Sci., 353, 549 (2011).CrossRefGoogle Scholar
- 56.H. Zhimin, Y. Guocong and D. Barba, J. Chem. Ind. Eng. (China), 44, 143 (1993).Google Scholar
- 57.A. Myers and J. M. Prausnitz, AIChE J., 11, 121 (1965).CrossRefGoogle Scholar
- 58.Z. Zhang, S. Xian, Q. Xia, H. Wang, Z. Li and J. Li, AIChE J., 59, 2195 (2013).CrossRefGoogle Scholar
- 59.P. Mishra, S. Mekala, F. Dreisbach, B. Mandal and S. Gumma, Sep. Purif. Technol., 94, 124 (2012).CrossRefGoogle Scholar