Skip to main content
Log in

Study on optimal conditions and adsorption kinetics of copper from water by collodion membrane cross-linked poly-γ-glutamic acid

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Poly-γ-glutamic acid (γ-PGA) is a novel polyamino acid formed through microorganism fermentation and biosynthesis. In the present test, membrane (PGA-C) formation by γ-PGA and collodion was performed by using 0.1% glutaraldehyde as a cross-linking agent. A study was conducted on the PGA-C adsorption of Cu2+, specifically the related adsorption equilibrium and kinetics, desorption and regeneration. The results show that with an initial solution pH=5.5 and at 318 K, the static adsorption isotherm behavior of PGA-C is in compliance with the Langmuir model and is beneficial to the adsorption of the metal. Meanwhile, with the reaction lasting for 30min, adsorption equilibrium was reached with a maximum adsorption capacity up to 7.431 mg/g. The entire reaction process follows the pseudo-second-order kinetics. By using PGA-C, good regeneration results were obtained after adsorption-generation-adsorption cycling with an HCl solution (0.1 mol/L) as regeneration liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Volesky, B. Davis and R. H. S. F. Vieira, Water Res., 34, 4270 (2000).

    Article  Google Scholar 

  2. M.W. Wan, C. C. Kan and C. H. Lin, Chia Nan Annual Bulletin, 33, 96 (2007).

    Google Scholar 

  3. I.-L. Shih, P.-J. Wu and C.-J. Shieh, Process. Biochemistry, 40, 2827 (2005).

    Article  CAS  Google Scholar 

  4. T. Kurniawan, G. Chan and W. Lo, Chem. Eng. J., 118, 83 (2006).

    Article  CAS  Google Scholar 

  5. D. Sud, G. Mahajan and M. P. Kaur, Bioresour. Technol., 99, 6017 (2008).

    Article  CAS  Google Scholar 

  6. M. Ashiuchi and H. Misono, Appl. Microbiol. Biotechnol., 59, 9 (2002).

    Article  CAS  Google Scholar 

  7. L. Shihi, Y. T. Van and Y. N. Chang, Enzyme Microb. Technol., 31, 213 (2002).

    Article  Google Scholar 

  8. S. M. Nomanbhay K. Palanisamy, Electronic J. Biotechnol., 8, 43 (2005).

    Google Scholar 

  9. J. Toth, Colloid Interface Sci., 55, 1 (1995).

    Article  CAS  Google Scholar 

  10. S. K. Parida, S. Dash, S. Patel and B.K. Mishra, Colloid Interface Sci., 121, 77 (2006).

    Article  CAS  Google Scholar 

  11. M. Jaroniec, Colloid Interface Sci., 28, 149 (1983).

    Google Scholar 

  12. O. Moradi, H. Modarress and M. Noroozi, Colloid Interface Sci., 271, 16 (2004).

    Article  CAS  Google Scholar 

  13. Y. J. Wang, J. H. Chen, Y. X. Cui, S.Q. Wang and D.M. Zhou, Hazard. Mater., 162, 1185 (2009).

    Article  Google Scholar 

  14. Z. Adamczyk and P. Warszyhski, Colloid Interface Sci., 63, 41 (1996).

    Article  CAS  Google Scholar 

  15. B. Stephen Inbaraj, J. S. Wang and J. F. Lu, Bioresour. Technol., 100, 200 (2009).

    Article  CAS  Google Scholar 

  16. H. A. Elliott and C. P. Huang, Water Res., 15, 849 (1981).

    Article  CAS  Google Scholar 

  17. M. Ajmal, A. H. Khan and S. Ahmad, Water Res., 32, 3085 (1998).

    Article  CAS  Google Scholar 

  18. B. S. Inbaraj and N. Sulochana, Hazard. Mater. B, 133, 283 (2006).

    Article  CAS  Google Scholar 

  19. D. Sarkar, E. Essington and K. C. Misra, Soil Sci. Soc. Am., 64, 1968 (2000).

    Article  CAS  Google Scholar 

  20. K. A. Krishnan and T. S. Anirudhan, Hazard. Mater. B, 92, 161 (2002).

    Article  Google Scholar 

  21. G. H. Ho, T. I. Ho, K. H. Hsieh, Y. C. Su, P.Y. Lin, J. Yang, K. H. Yang and S. C. Yang, Chin. Chem. Soc., 53, 1363 (2006).

    CAS  Google Scholar 

  22. L. Shihi and Y. T. Van, Bioresour. Technol., 79, 207 (2001).

    Article  Google Scholar 

  23. T. Altun and E. Pehlivan, Clean Soil Air Water, 35, 601 (2007).

    Article  CAS  Google Scholar 

  24. B. S. Inbaraj, J. T. Chien, G. H. Ho, J. Yang and B. H. Chen, Biochem. Eng., 31, 204 (2006).

    Article  CAS  Google Scholar 

  25. B. S. Inbaraj and N. Sulochana, Bioresour. Technol., 94, 49 (2004).

    Article  CAS  Google Scholar 

  26. T. S. Anirudhan, P. Senan and M. R. Unnithan, Sep. Purif. Technol., 52, 512 (2007).

    Article  CAS  Google Scholar 

  27. G. McKay, H. S. Blair and J. R. Gardener, J. Appl. Polym. Sci., 27, 3043 (1982).

    Article  CAS  Google Scholar 

  28. Y. S. Ho and G. McKay, Process. Biochem., 38, 1047 (2003).

    Article  CAS  Google Scholar 

  29. B. S. Inbaraj, C. P. Chiu, G. H. Ho, J. Yang and B. H. Chen, Bioresour. Technol., 99, 1026 (2008).

    Article  CAS  Google Scholar 

  30. J. Febrianto, A.N. Kosasih and J. Sunarso, J. Hazard. Mater., 162, 616 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangting Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Wang, A., Zheng, X. et al. Study on optimal conditions and adsorption kinetics of copper from water by collodion membrane cross-linked poly-γ-glutamic acid. Korean J. Chem. Eng. 30, 1295–1300 (2013). https://doi.org/10.1007/s11814-013-0051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0051-6

Key words

Navigation