Contribution of Mesoscale Eddies to the Subduction and Transport of North Pacific Eastern Subtropical Mode Water

  • Zhitong Yang
  • Yiyong LuoEmail author


This study investigates the contribution of mesoscale eddies to the subduction and transport of North Pacific Eastern Subtropical Mode Water (ESTMW) using the high-frequency output of an eddy-resolved ocean model spanning the period 1994–2010. Results show that the subduction induced by mesoscale eddies accounts for about 31% of the total subduction of ESTMW formation. The volume of ESTMW trapped by anticyclonic eddies is slightly larger than that trapped by cyclonic eddies. The ESTMW trapped by all eddies in May reaches up to about 2.8 × 1013 m3, which is approximately 16% of the total ESTMW volume. The eddy-trapped ESTMW moves primarily westward, with its meridional integration at 18°–30°N reaching about 0.17 Sv, which is approximately 18% of the total zonal ESTMW transport in this direction, at 140°W. This study highlights the important role of eddies in carrying ESTMW westward over the northeastern Pacific Ocean.

Key words

mesoscale eddies subduction transport North Pacific Eastern Subtropical Mode Water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the National Natural Science Foundation of China (No. 41676002). The OFES data were provided by the Asia Pacific Data Research Center ( The altimeter products were obtained from the CMEMS (


  1. Bryden, H. L., and Brady, E. C., 1989. Eddy momentum and heat fluxes and their effects on the circulation of the equatorial Pacific Ocean. Journal of Marine Research, 47 (1): 55–79.CrossRefGoogle Scholar
  2. Chelton, D. B., Gaube, P., Schlax, M. G., Schlax, M. G., Early, J. J., and Samelson, R. M., 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334 (6054): 328–332.CrossRefGoogle Scholar
  3. Chelton, D. B., Schlax, M. G., and Samelson, R. M., 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91 (2): 167–216.CrossRefGoogle Scholar
  4. Davey, M. K., and Killworth, P. D., 1984. Isolated waves and eddies in a shallow water model. Journal of Physical Oceanography, 14 (6): 1047–1064.CrossRefGoogle Scholar
  5. Dong, C. M., McWilliams, J. C., Liu, Y., and Chen, D. K., 2014. Global heat and salt transports by eddy movement. Nature Communications, 5: 1–6.Google Scholar
  6. Early, J. J., Samelson, R. M., and Chelton, D. B., 2011. The evolution and propagation of quasigeostrophic ocean eddies. Journal of Physical Oceanography, 41 (8): 1535–1555.CrossRefGoogle Scholar
  7. Faghmous, J. H., Frenger, I., Yao, Y. S., and Warmka, R., 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2: 1–16.CrossRefGoogle Scholar
  8. Flierl, G. R., 1981. Particle motions in large-amplitude wave fields. Geophysical & Astrophysical Fluid Dynamics, 18: 39–74.CrossRefGoogle Scholar
  9. Gaillard, F., Autret, E., Thierry, V., and Galaup, P., 2009. Quality control of large argo datasets. Journal of Atmospheric and Oceanic Technology, 26 (2): 337–351.CrossRefGoogle Scholar
  10. Hautala, S., and Roemmich, D., 1998. Subtropical mode water in the northeast Pacific basin. Journal of Geophysical Reserach, 103 (C6): 13055–13066.CrossRefGoogle Scholar
  11. Hosoda, S., Xie, S. P., Takeuchi, K., and Nonaka, M., 2001. Eastern North Pacific Subtropical Mode Water in a general circulation model: Formation mechanism and salinity effects. Journal of Geophysical Research: Oceans, 106 (C9): 19671–19681.CrossRefGoogle Scholar
  12. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, J., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77 (3): 437–472.CrossRefGoogle Scholar
  13. Kolodziejczyk, N., Prigent- Mazella, A., and Fabienne, G., 2017. ISAS-15 temperature and salinity gridded fields. SEANOE. Scholar
  14. Kolodziejczyk, N., Testor, P., Lazar, A., Echevin, V., Krahman, G., Chaigneau, A., Gourcuff, C., Wade, M., Faye, S., Estrade, P., Capet, X., Mortier, L., Brehmer, P., Schutte, F., and Karstensen, J., 2018. Subsurface fine-scale patterns in an anticyclonic eddy off cap-vert peninsula observed from glider measurements. Journal of Geophysical Research: Oceans, 123: 1–18.Google Scholar
  15. Kouketsu, S., Tomita, H., Oka, E., Hosoda, S., Kobayashi, T., and Sato, K., 2012. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific. Journal of Oceanography: Dynamic and Climatic Effects, 68: 63–77.CrossRefGoogle Scholar
  16. Liu, C., and Li, P. L., 2013. The impact of meso-scale eddies on the Subtropical Mode Water in the western North Pacific. Journal of Ocean University of China, 12 (2): 230–236.CrossRefGoogle Scholar
  17. Liu, L. L., Huang, R. X., and Wang, F., 2016. Subduction/ obduction rate in the North Pacific diagnosed by an eddyresolving model. Chinese Journal of Oceanology and Limnology, 34 (4): 835–846.CrossRefGoogle Scholar
  18. Liu, L. L., Wang, F., and Huang, R. X., 2011. Enhancement of subduction/obduction due to hurricane-induced mixed layer deepening. Deep-Sea Research I: Oceanographic Research Papers, 58 (6): 658–667.CrossRefGoogle Scholar
  19. Luo, Y. Y., Liu, Q., and Rothstein, L. M., 2009. Simulated response of North Pacific Mode Waters to global warming. Geophysical Reserach Letter, 36: L23609, DOI: 10.1029/2009GL 0409.CrossRefGoogle Scholar
  20. Masumoto, Y., Sasaki, H., Kagimoto, T., Komori, N., Ishida, A., Sasai, Y., Miyama, T., Motoi, T., Mitsudera, H., Takahashi, K., Sakuma, H., and Yamagata, T., 2004. A fifty-year eddyresolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). Journal of the Earth Simulator, 1: 35–56.Google Scholar
  21. Masuzawa, J., 1969. Subtropical mode water. Deep Sea Research and Oceanographic Abstracts, 16: 463–472.CrossRefGoogle Scholar
  22. McCartney, M., 1982. The subtropical recirculation of mode waters. Journal of Marine Research, 40: 427–464.Google Scholar
  23. McCreary, J., and Lu, P., 1994. Interaction between the subtropical and equatorial ocean circulation: The subtropical cell. Journal of Physical Oceanography, 24: 466–497.CrossRefGoogle Scholar
  24. McGillicuddy, D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C. A., Davis, C. S., Ewart, C., Falkowski, P. G., Goldthwait, S. A., Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V. K., Ledwell, J. R., Li, Q. P., Siegel, D. A., and Steinberg, D. K., 2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316 (5827): 1021–1026.CrossRefGoogle Scholar
  25. Nakamura, H., 1996. A pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific: Its distribution and formation. Journal of Oceanography, 52 (2): 171–. 188.CrossRefGoogle Scholar
  26. Nishikawa, S., Tsujino, H., Sakamoto, K., and Nakano, H., 2010. Effects of mesoscale eddies on subduction and distribution of subtropical mode water in an eddy-resolving OGCM of the western North Pacific. Journal of Physical Oceanography, 40 ((8): 1748–1765.CrossRefGoogle Scholar
  27. Pan, A. J., and Liu, Q., 2005. Mesoscale eddy effects on the wintertime vertical mixing in the formation region of the North Pacific Subtropical Mode Water. Chinese Science Bulletin, 50 ((17): 1949–1956.CrossRefGoogle Scholar
  28. Qiu, B., and Huang, R. X., 1995. Ventilation of the North Atlantic and North Pacific: Subduction versus obduction. Journal of Physical Oceanography, 25: 2374–2390.CrossRefGoogle Scholar
  29. Qiu, B., Chen, S. M., Klein, P., Sasaki, H., and Sasai, Y., 2014. Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. Journal of Physical Oceanography, 44 (12): 3079–3098.CrossRefGoogle Scholar
  30. Qu, T. D., Xie, S. P., Mitsudera, H., and Ishida, K., 2002. Subduction of the North Pacific Mode Waters in a global highresolution GCM*. Journal of Physical Oceanography, 32 (3): 746–763.CrossRefGoogle Scholar
  31. Rhines, P. B., and Young, W. R., 1982. Homogenization of potential vorticity in planetary gyres. Journal of Fluid Mechanics, 122: 347–367.CrossRefGoogle Scholar
  32. Sasaki, H., Nonaka, M., Masumoto, Y., Sasai, Y., Uehara, H., and Sakuma, H., 2008. An eddy-resolving Hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the earth simulator. In: High Resolution Numerical Modeling of the Atmosphere and Ocean. Hamilton, K., and Ohfuchi, W., eds., Springer, New York, 157–185.CrossRefGoogle Scholar
  33. Suga, T., Takei, Y., and Hanawa, K., 1997. Thermostad distribution in the North Pacific subtropical gyre: The central mode water and the subtropical mode water. Journal of Physical Oceanography, 27 (1): 140–152.CrossRefGoogle Scholar
  34. Sugimoto, S., and Hanawa, K., 2007. Further evidence for nonreemergence of winter SST anomalies in the North Pacific eastern subtropical mode water area. Journal of Oceanography, 63 (4): 625–635.CrossRefGoogle Scholar
  35. Talley, L. D., and Raymer, M. E., 1982. Eighteen degree water variability. Journal of Marine Research, 40: 757–775.Google Scholar
  36. Toyama, K., Iwasaki, A., and Suga, T., 2015. Interannual variation of annual subduction rate in the North Pacific estimated from a gridded argo product. Journal of Physical Oceanography, 45 (9): 2276–2293.CrossRefGoogle Scholar
  37. Toyoda, T., Awaji, T., and Ishikawa, Y., 2004. Preconditioning of winter mixed layer in the formation of North Pacific eastern subtropical mode water. Geophysical Research Letters, 31 ((17): 1–5.CrossRefGoogle Scholar
  38. Toyoda, T., Awaji, T., Masuda, S., Suguura, N., Igarashi, H., Mochizuki, T., and Ishikawa, Y., 2011. Interannual variability of North Pacific eastern subtropical mode water formation in the 1990s derived from a 4-dimensional variational ocean data assimilation experiment. Dynamics of Atmospheres and Oceans, 51 (1-2): 1–25.CrossRefGoogle Scholar
  39. Toyoda, T., Fujii, Y., Kuragano, T., Kosugi, N., Sasano, D., Kamachi, M., Ishikawa, Y., Masuda, S., Sato, K., Awaji, T., Hernandez, F., Ferry, N., Guinehut, S., Martin, M., Peterson, K. A., Good, S. A., Valdivieso, M., Haines, K., Storto, A., Masina, S., Kohl, A., Yin, Y., Alves, O., Smith, G., Chang, Y. S., Vernieres, G., Wang, X. C., Forget, G., Heimbach, P., Wang, O., Fukumori, I., Lee, T., Zuo, H., and Balmaseda, M., 2017. Interannual-decadal variability of wintertime mixed layer depths in the North Pacific detected by an ensemble of ocean syntheses. Climate Dynamics, 49 (3): 891–907.CrossRefGoogle Scholar
  40. Uehara, H., Suga, T., Hanawa, K., and Shikama, N., 2003. A role of eddies in formation and transport of North Pacific Subtropical Mode Water. Geophysical Research Letters, 30 ((13): 1705.CrossRefGoogle Scholar
  41. Xie, S. P., Kunitani, T., Kubokawa, A., and Kubokawa, A., 2000. Interdecadal thermocline variability in the North Pacific for 1958–1997: A GCM simulation. Journal of Physical Oceanography, 30: 2798–2813.CrossRefGoogle Scholar
  42. Xu, L. X., Li, P. L., Xie, S. P., Liu, Q., Liu, C., and Gao, W. D., 2016. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nature Communications, 7: 1–9.Google Scholar
  43. Xu, L. X., Xie, S. P., McClean, J. L., Liu, Q., and Sasaki, H., 2014. Mesoscale eddy effects on the subduction of North Pacific Mode Waters. Journal of Geophysical Research: Oceans, 119 (8): 4867–4886.Google Scholar
  44. Zhang, Z. G., Wang, W., and Qiu, B., 2014. Oceanic mass transport by mesoscale eddies. Science, 345 (6194): 322–324.CrossRefGoogle Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  1. 1.Physical Oceanography Laboratory/CIMSTOcean University of China and Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations