Advertisement

Purification and Characterization of a Novel Lipase from Antarctic Krill

  • Xin Chen
  • Chunlan Wang
  • Jiakun XuEmail author
  • Fang Wang
  • Yihui Jiang
  • Yixuan Chen
  • Xianyong ZhaoEmail author
Article
  • 12 Downloads

Abstract

Lipase from Antarctic krill, with a molecular weight of 71.27kDa, was purified with ammonium sulfate precipitation and a series of chromatographic separations over ion exchange (DEAE) and gel filtration columns (Sephacryl S-100), resulting in 5.2% recovery with a 22.4-fold purification ratio. The optimal pH and temperature for enzyme activity were 8.0 and 45°C, respectively. Purified lipase had Km and Vmax values of 3.27 mmol L-1 and 2.4 Umg-1, respectively, using p-nitrophenyl laurate as the substrate. Li-pase activity was enhanced by adding Ca2+ and Mg2+ ions in the concentration ranges of 0-0.5 mmol L-1 and 0-0.3mmol L-1, respectively, while the activity was inhibited by a further increase in these ion concentrations. Fe3+ and Cu2+ ions showed obvious inhibitory effects on enzyme activity, and the inhibition rates were 71.8% and 53.3% when the ion concentrations were 0.5 mmol L-1.

Key words

Antarctic krill lipase isolation and purification enzymology properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Marine S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology (Qingdao) (Nos. 2018 SDKJ0304-4-2, 2018SDKJ0303-1), the Central Public-Interest Scientific Institution Basal Research Fund, Chinese Academy of Fishery Sciences (Nos. 2017HY-XKQ01-01, 2016ZD0902, 2018GH10), the Aoshan S&T Innovation Project from Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ02-02-04), the Antarctic Marine Biological Resources Development and Utilization Project from the Ministry of Agriculture and Rural Affairs, People’s Republic of China (2017), and the Financial Fund of the Ministry of Agriculture and Rural Affairs, People?s Republic of China (Nos. NFZX2018, FSTICE2019).

References

  1. Achouri, N., Smichi, N., Gargouri, Y., Miled, N., and Fendri, A., 2017. The smooth-hound lipolytic system: Biochemical characterization of a purified digestive lipase, lipid profile and in vitro oil digestibility. International Journal of Biological Macromolecules, 102: 1120–1129, DOI:  https://doi.org/10.1016/j.ijbiomac.2017.05.002.CrossRefGoogle Scholar
  2. Alonzo, F., Virtue, P., Nicol, S., and Nichols, P. D., 2005. Lipids as trophic markers in Antarctic krill. II. Lipid composition of the body and digestive gland of Euphausia superba in controlled conditions. Marine Ecology Progress Series, 296 (1): 65–79, DOI:  https://doi.org/10.1093/plankt/18.6.895.CrossRefGoogle Scholar
  3. Cai, Y. J., Wang, L., Liao, X. R., Ding, Y. R., and Sun, J., 2009. Purification and partial characterization of two new cold-adapted lipases from mesophilic Geotrichum sp. SYBC WU-3. Process Biochemistry, 44 (7): 786–790, DOI:  https://doi.org/10.1016/j.proc-bio.2009.03.011.CrossRefGoogle Scholar
  4. Chaiyaso, T., Seesuriyachan, P., Zimmermann, W., and H-Kittikun, A., 2012. Purification and characterization of lipase from newly isolated Burkholderia multivorans PSU-AH130 and its application for biodiesel production. Annals of Microbiology, 62 (4): 1615–1624, DOI:  https://doi.org/10.1007/s13213-011-0418-z.CrossRefGoogle Scholar
  5. Chen, Y. J., Wang, C. J., Hou, W. Q., Wang, X. S., Gali, B. G., Huasai, S. M. J. D., Yang, S. Q., Wu, A. Q. M., Zhao, Y. F., Wu, Y. F., and Chen, A. R. G. L., 2017. Effects of antibacterial compounds produced by Saccharomyces cerevisiae in Koumiss on pathogenic Escherichia coli Os and its cell surface characteristics. Journal of Integrative Agriculture, 16 (3): 742–748, DOI:  https://doi.org/10.1016/S2095-3119(16)61516-2.CrossRefGoogle Scholar
  6. Cherif, S., Fendri, A., Miled, N., Trabelsi, H., Mejdoub, H., and Gargouri, Y., 2007. Crab digestive lipase acting at high temperature: Purification and biochemical characterization. Biochimie, 89 (8): 1012–1018, DOI:  https://doi.org/10.1016/j.biochi.2007.02.005.CrossRefGoogle Scholar
  7. Esakkiraj, P., Rajkumarbharathi, M., and Grasian Immanuel, A. P., 2010. Lipase production by Staphylococcus epidermidis CMST-Pi 1 isolated from the gut of shrimp Penaeus indicus. Annals of Microbiology, 60 (1): 37–42, DOI:  https://doi.org/10.1007/s13213-009-0003-x.CrossRefGoogle Scholar
  8. Friedrich, B., and Reinhard, S., 1996. A field study on the physiology of digestion in the Antarctic krill, Euphausia superba with special regard to chitinolytic enzymes. Journal of Plankton Research, 18 (6): 895–906, DOI:  https://doi.org/10.1093/plankt/18.6.895.CrossRefGoogle Scholar
  9. Gjellesvik, D. R., Lombardo, D., and Walthe, B. T., 1992. Pancreatic bile salt dependent lipase from cod (Gadus morhua): Purification and properties. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1124 (2): 123–134, DOI:  https://doi.org/10.1016/0005-2760(92)90088-D.CrossRefGoogle Scholar
  10. Gorgun, S., and Akpinar, M. A., 2012. Purification and characterization of lipase from the liver of carp, Cyprinus carpio L. (1758), living in Lake Todurge (Sivas, Turkiye). Turki sh Jo urnal of Fisheries and Aquatic Sciences, 12 (2): 207–215, DOI:  https://doi.org/10.4194/1303-2712-v12_2_03.Google Scholar
  11. Guo, Q. Y., Chi, H., Yang, X. S., Li, X. Y., and Hang, Y. J., 2001. Partial purification and characterization of protease from Antarctic krill (Euphausia superba). Food & Fermentation Industries, 37 (10): 92–95, DOI:  https://doi.org/10.1002/clc.20818.Google Scholar
  12. Hahn Berg, I. C., Kalfas, S., Malmsten, M., and Arnebrant, T., 2001. Proteolytic degradation of oral biofilms in vitro and in vivo: Potential of proteases originating from Euphausia superba for plaque control. European Journal of Oral Sciences, 109 (5): 316–324, DOI:  https://doi.org/10.1034/j.1600-0722.2001.00099.x.CrossRefGoogle Scholar
  13. Hatzinikolaou, D. G., Kourentzi, E., Stamatis, H., Christakopoulos, P., Kolisis, F. N., Kekos, D., and Macris, B. J., 1999. A novel lipolytic activity of Rhodotorula glutinis cells: Production, partial characterization and application in the synthesis of esters. Journal of Fermentation and Bioengineering, 88 (1): 53–56, DOI:  https://doi.org/10.1016/S1389-1723(99)80175-3.Google Scholar
  14. Hellgren, L., Mohr, V., and Vincent, J., 1986. Proteases of Antarctic krill-A new system for effective enzymatic debridement of necrotic ulcerations. Cellular and Molecular Life Sciences, 42 (4): 403–404, DOI:  https://doi.org/10.1016/j.bej.2014.09.012.CrossRefGoogle Scholar
  15. Iijima, N., Tanaka, S., and Ota, Y., 1998. Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiology and Biochemistry, 18 (1): 59–69, DOI:  https://doi.org/10.1023/A:1007725513389.CrossRefGoogle Scholar
  16. Kadri, T., Rouissi, T., Magdouli, S., Brar, S. K., Hegde, K., Khiari, Z., Daghrir, R., and Lauzon, J. M., 2018. Production and characterization of novel hydrocarbon degrading enzymes from Alcanivorax borkumensis. International Journal of Biological Macromolecules, 112: 230–240, DOI:  https://doi.org/10.1016/j.ijbiomac.2018.01.177.CrossRefGoogle Scholar
  17. Kuepethkaew, S., Sangkharak, K., Benjakul, S., and Klomklao, S., 2017. Use of TPP and ATPS for partitioning and recovery of lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas. Journal of Food Science and Technology, 54 (12): 3880–3891, DOI:  https://doi.org/10.1007/s13197-017-2844-9.CrossRefGoogle Scholar
  18. Kurtovic, I., Marshall, S. N., Zhao, X., and Simpson, B. K., 2010. Purification and properties of digestive lipases from Chinook salmon (Oncorhynchus tshawytscha) and New Zealand hoki (Macruronus novaezelandiae). Fish Physiology and Biochemistry, 36 (4): 1041–1060, DOI:  https://doi.org/10.1007/s10695-010-9382-y.CrossRefGoogle Scholar
  19. Lineweaver, H., and Burk, D., 1934. The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56 (3): 658–666, DOI:  https://doi.org/10.1021/ja01318a036.CrossRefGoogle Scholar
  20. Ramani, K., Saranya, P., Jain, S. C., and Sekaran, G., 2013. Lipase from marine strain using cooked sunflower oil waste: Production optimization and application for hydrolysis and thermodynamic studies. Bioprocess and Biosystems Engineering, 36 (3): 301–315, DOI:  https://doi.org/10.1007/s00449-012-0785-2.CrossRefGoogle Scholar
  21. Saborowski, R., and Buchholz, F., 1999. A laboratory study on digestive processes in the Antarctic krill, Euphausia superba, with special regard to chitinolytic enzymes. Polar Biology, 21 (5): 295–304, DOI:  https://doi.org/10.1007/s003000050365.CrossRefGoogle Scholar
  22. Saborowski, R., Buchholz, F., Vetter, R. H., Wirth, S. J., and Wolf, G. A., 1993. Soluble, dye-labelled chitin derivative adapted for the assay of krill chitinase. Comparative Biochemistry and Physiology, Part B: Biochemistry & Molecular Biology, 105 (3–4): 673–678, DOI:  https://doi.org/10.1016/0305-0491(93)90104-D.CrossRefGoogle Scholar
  23. Sae-Leaw, T., and Benjakul, S., 2018. Lipase from liver of sea-bass (Lates calcarifer): Characteristics and the use for defatting of fish skin. Food Chemistry, 204: 9–15, DOI:  https://doi.org/10.1016/j.foodchem.2017.07.089.CrossRefGoogle Scholar
  24. Salamanca, M. H., Barría, C., Asenjo, J. A., and Andrews, B. A., 2002. Isolation, purification and preliminary characterization of cryophilic proteases of marine origin. Bioseparation, 10 (4–5): 237–241, DOI:  https://doi.org/10.1023/A:1016383212244.Google Scholar
  25. Sangeetha, R., Arulpandi, I., and Geetha, A., 2011. Bacterial lipases as potential industrial biocatalysts: An overview. Research Journal of Microbiology, 6 (1): 1–24, DOI:  https://doi.org/10.3923/jm.2011.1.24.CrossRefGoogle Scholar
  26. Si, Y. X., Song, J. J., Fang, N. Y., Wang, W., Wang, Z. J., Yang, J. M., Qian, G. Y., Shang, S. J., and Park, Y. D., 2014. Purification, characterization, and unfolding studies of arginine kinase from Antarctic krill. International Journal of Biological Macromolecules, 67: 426–432, DOI:  https://doi.org/10.1016/j.ijbiomac.2014.03.044.CrossRefGoogle Scholar
  27. Sivaramakrishnan, R., and Incharoensakdi, A., 2016. Purification and characterization of solvent tolerant lipase from Bacillus sp. for methyl ester production from algal oil. Journal of Bioscience and Bioengineering, 121 (5): 517–522, DOI:  https://doi.org/10.1016/j.jbiosc.2015.09.005.CrossRefGoogle Scholar
  28. Smichi, N., Fendri, A., Chaâbouni, R., Rebah, F. B., Gargouri, Y., and Miled, N., 2010. Purification and biochemical characterization of an acid-stable lipase from the pyloric caeca of sardine (Sardinella aurita). Applied Biochemistry and Biotechnology, 162 (5): 1483–1496, DOI:  https://doi.org/10.1007/s12010-010-8920-5.CrossRefGoogle Scholar
  29. Smichi, N., Fendri, A., Triki, S., Arondel, V., Rebai, A., Gargouri, Y., and Miled, N., 2017. Biochemical characterization, cloning and molecular modeling of a digestive lipase from red seabream (Pagrus major): Structural explanation of the interaction deficiency with colipase and lipidic interface. Engineering in Life Sciences, 17 (6): 664–667, DOI:  https://doi.org/10.1002/elsc.201600246.CrossRefGoogle Scholar
  30. Smichi, N., Gargouri, Y., Miled, N., and Fendri, A., 2013. A grey mullet enzyme displaying both lipase and phospholipase activities: Purification and characterization. International Journal of Biological Macromolecules, 58: 87–94, DOI:  https://doi.org/10.1016/j.ijbiomac.2013.03.056.CrossRefGoogle Scholar
  31. Spindler, K. D., and Buchholz, F., 1988. Partial characterization of chitin degrading enzymes from two euphausiids, Euphausia superba and Meganyctiphanes norvegica. Polar Biology, 9 (2): 115–122, DOI:  https://doi.org/10.1007/BF00442038.CrossRefGoogle Scholar
  32. Tsugawa, K., Ishizaki, Y., and Takahashi, K. P., 1999. Increase in cold-stability of microtubules by cold adaptation of Carassius cells in situ and in vitro. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 124 (1): S126, DOI:  https://doi.org/10.1016/S1095-6433(99)90498-1.CrossRefGoogle Scholar
  33. Turkiewicz, M., Galas, E., and Zielińska, M., 1985. Purification and partial characterization of an endo-(1→3)-P-D-glucanase from Euphausia superba Dana (Antarctic Krill). Polar Biology, 4 (4): 203–211, DOI:  https://doi.org/10.1007/BF00999765.CrossRefGoogle Scholar
  34. Wu, Z. Q., Jiang, G. L., Xiang, P., Yang, D., and Wang, N., 2008. Purification and characterization of trypsin-like enzymes from North Pacific krill (Euphausia pacifica). Biotechnology Letters, 30 (1): 67–72, DOI:  https://doi.org/10.1007/s10529-007-9511-6.CrossRefGoogle Scholar
  35. Xie, C. X., Wu, B., Qin, S., and He, B. F., 2016. A lipase with b A. road solvent stability from Burkholderia cepacia RQ3: Isolation, characteristics and application for chiral resolution of 1-phenylethanol. Bioprocess and Biosystems Engineering, 39 (1): 59–66, DOI:  https://doi.org/10.1007/s00449-015-1489-1.CrossRefGoogle Scholar
  36. Yuan, D. J., Lan, D. M., Xin, R. P., Yang, B., and Wang, Y. H., 2016. Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007. Biotechnology and Applied Biochemistry, 63 (1): 41–50, DOI:  https://doi.org/10.1002/bab.1338.CrossRefGoogle Scholar
  37. Živković, L. T. I., Živković, L. S., Babić, B. M., Kokunešoski, M. J., Jokić, B. M., and Karadžića, I. M., 2015. Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/ macroporous silica and zirconia. Biochemical Engineering Journal, 93: 78–83, DOI:  https://doi.org/10.1016/j.bej.2014.09.012.Google Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2020

Authors and Affiliations

  1. 1.College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
  2. 2.Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar FisheryMinistry of Agriculture and Rural Affairs of PRCQingdaoChina
  3. 3.Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  5. 5.College of Chemistry and Chemical EngineeringOcean University of ChinaQingdaoChina

Personalised recommendations