Journal of Ocean University of China

, Volume 19, Issue 1, pp 60–68 | Cite as

The Mineral Composition and Sources of the Fine-Grained Sediments from the 49.6°E Hydrothermal Field at the SWIR

  • Wenqiang Zhang
  • Xiaoxia SunEmail author
  • Dejiang FanEmail author
  • Ming Liu
  • Qi Jia
  • Zuosheng Yang


We used the X-ray diffraction method to determine systematically the mineral phases in bulk sediment samples and acid undissolved residuals of the fine-grained fraction of the surface sediments from the 49.6°E hydrothermal field at the Southwest Indian Ridge (SWIR) and discussed the mineral sources of the surface sediments. The results showed that the surface sediments in this region were composed of calcareous ooze, and calcite was the dominant mineral. The sediments also contained quartz, feldspar, clay minerals, pyroxene, sphalerite, barite, serpentine, and magnetite. The quartz, feldspar, and clay minerals were exogenous minerals that mainly originated from the Namib and Kalahari deserts in southern Africa. The pyroxene, serpentine, magnetite, sphalerite, calcite, and barite were endogenous minerals from weathering of seafloor basement rocks and seafloor hydrothermal activities. The sulfide particles in the sediments were mainly deposited from upwelling plumes.

Key words

Southwest Indian Ridge surface sediment mineral source hydrothermal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank the crew of the R/VOcean No. 1’ for sampling during the cruises DY125, 26, and 34. This work was supported by the China Ocean Mineral Resources Research and Development Association (No. DY 125-11-R-04).


  1. Aoki, S., Kohyama, N., and Hotta, H., 1996. Hydrothermal clay minerals found in sediment containing yellowish-brown material from the Japan Basin. Marine Geology, 129: 331–336.CrossRefGoogle Scholar
  2. Bach, W., 2002. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°-16°E. Geochemistry, Geophysics, Geosystems, 3: 1–15.CrossRefGoogle Scholar
  3. Baker, E. T., and German, C. R., 2004. On the global distribution of hydrothermal vent fields. In: Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. German, C. R., et al., eds., American Geophysical Union, Washington, D. C, 245–266.Google Scholar
  4. Beaulieu, S. E., Baker, E. T., and German, C. R., 2015. Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep Sea Research Part II: Topical Studies in Oceanography, 121: 202–212.CrossRefGoogle Scholar
  5. Bemis, K., Lowell, R. P., and Farough, A., 2012. Diffuse flow on and around hydrothermal vents at mid-ocean ridges. Oceanography, 25: 182–191, DOI: Scholar
  6. Bodei, S., Buatier, M., Steinmann, M., Adatte, T., and Wheat, C. G., 2008. Characterization of metalliferous sediment from a low-temperature hydrothermal environment on the Eastern Flank of the East Pacific Rse. Marine Geology, 250: 128–141.CrossRefGoogle Scholar
  7. Bouza, P. J., Simon, M., Aguilar, J., del Valle, H., and Rostagno, M., 2007. Fibrous-clay mineral formation and soil evolution in Aridisols of northeastern Patagonia, Argentina. Geoderma, 139: 38–50, DOI: Scholar
  8. Bremner, J. M., and Willis, J. P., 1993. Mineralogy and geochemistry of the clay fraction of sediments from the Namibian continental margin and the adjacent hinterland. Marine Geology, 115: 85–116.CrossRefGoogle Scholar
  9. Buatier, M. D., Monnin, C., Fruh-Green, G. L., and Karpoff, A. M., 2001. Fluid-sediment interaction related to hydrothermal circulation in the eastern flank of the Juan de Fuca Ridge. Chemical Geology, 175: 343–360.CrossRefGoogle Scholar
  10. Caquineau, S., Gaudichet, A., Gomes, L., Magonthier, M., and Chatenet, B., 1998. Saharan dust: Clay ratio as a relevant tracer to assess the origin of soil-derived aerosols. Geophysical Research Letters, 25: 983–986.CrossRefGoogle Scholar
  11. Dekov, V. M., Marchig, V., Rajta, I., and Uzonyi, I., 2003. Fe-Mn micronodules born in the metalliferous sediments of two spreading centres: The East Pacific Rse and Mid-Atlantic Ridge. Marine Geology, 199: 101–121.CrossRefGoogle Scholar
  12. Dias, A. S., and Barriga, F. J. A. S., 2006. Mineralogy and geochemistry of hydrothermal sediments from the serpenti- nite-hosted Saldanha hydrothermal field (36°34′N; 33°26′W) at MAR. Marine Geology, 225: 157–175.CrossRefGoogle Scholar
  13. Ellis, D. J., 1980. Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica: P-T conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust. Contributions to Mineralogy and Petrology, 74: 201–210, DOI: Scholar
  14. Fouquet, Y., and Rona, A., 1993. New age data for Md-Atlantic Ridge hydrothermal sites: TAG and Snakepit chronology revisited. Journal of Geophysical Research Solid Earth, 98 (B6): 9705–9713.CrossRefGoogle Scholar
  15. Gingele, F. X., De Deckker, P., and Hillenbrand, C. D., 2001. Clay mineral distribution in surface sediments between Indonesia and NW Australia - Source and transport by ocean currents. Marine Geology, 179: 135–146, DOI: Scholar
  16. Glaccum, R. A., and Prospero, J. M., 1980. Saharan aerosols over the tropical North Atlantic-Mineralogy. Marine Geology, 37: 295–321.CrossRefGoogle Scholar
  17. Han, C. H., Wu, G. H., and Ye, Y., 2015. Geochemical methods of sediment for using in exploration of submarine polymetallic sulfide. Academic Annual Meeting of the China Institute of Mineral and Rock Geochemistry. Changchun.Google Scholar
  18. Hannington, M., Jamieson, J., Monecke, T., Petersen, S., and Beaulieu, S., 2011. The abundance of seafloor massive sulfide deposits. Geology, 39: 1155–1158, DOI: Scholar
  19. Herzig, P. M., and Pluger, W. L., 1988. Exploration for hydro-thermal activity near the Rodriguez triple junction, Indian Ocean. The Canadian Mineralogist, 26: 721–736.Google Scholar
  20. Hrischeva, E., and Scott, S. D., 2007. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Rdge. Geochimica et Cosmochimica Acta, 71: 3476–3497.CrossRefGoogle Scholar
  21. Hrischeva, E., Scott, S. D., and Weston, R., 2007. Metalliferous sediments associated with presently forming volcanogenic massive sulfides: The SuSu knolls hydrothermal field, eastern manus basin, Papua New Guinea. Economic Geology, 102: 55–73.CrossRefGoogle Scholar
  22. Huang, D. S., Zhang, X. Y., Zhang, G. Y., Tao, C. H., and Li, H. M., 2016. Geochemical characteristics of sediments in Southwest Indian Ridge 48.6°-51.7°E. Geological Science and Technology Information, 35 (1): 22–29 (in Chinese with English abstract).Google Scholar
  23. Huang, D. Y., 2010. Preliminary studies on the benthos from deep-sea hydrothermal fields in Lau Basin of Southwest Pacific and Southwest Indian Ridge. PhD thesis. Third Institute of Oceanography, State Oceanic Administration.Google Scholar
  24. James, R. H., Green, D. R. H., Stock, M. J., Alker, B. J., Banerjee, N. R., Cole, C., German, C. R., Huvenne, V. A. I., Powell, A. M., and Connelly, D. P., 2014. Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre. Geochimica et Cosmochimica Acta, 139: 47–71.CrossRefGoogle Scholar
  25. Jeong, G. Y., 2008. Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils. Journal of Geophysical Research: Atmospheres, 113: 1–16.CrossRefGoogle Scholar
  26. Jia, Q., Fan, D., Zhang, W., Sun, X., Liu, M., and Yang, Z., 2017. Sulfide mineralogy of surface sediments of the southwestern Indian Ridge and its geological implication. Acta Mineralogica Sinica, 37 (6): 725–736 (in Chinese with English abstract).Google Scholar
  27. Kato, Y., Fujinaga, K., Nakamura, K., Takaya, Y., Kitamura, K., Ohta, J., Toda, R., Nakashima, T., and Iwamori, H., 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience, 4: 535–539.CrossRefGoogle Scholar
  28. Kolla, V., Kostecki, J. A., Henderson, L., and Hess, L., 1980. Morphology and Quaternary sedimentation of the Mozambique Fan and environs, southwestern Indian Ocean. Sedimentology, 27: 357–378.CrossRefGoogle Scholar
  29. Koschinsky, A., Seifert, R., Halbach, P., Bau, M., Brasse, S., De Carvalho, L. M., and Fonseca, N. M., 2002. Geochemistry of diffuse low-temperature hydrothermal fluids in the North Fiji Basin. Geochimica et Cosmochim Acta, 66: 1409–1427.CrossRefGoogle Scholar
  30. Lalou, C., Reyss, J. L., Brichet, E., Rona, P. A., and Thompson, G., 1995. Hydrothermal activity on a 105-year scale at a slow spreading ridge, TAG hydrothermal field, Md-Atlantic Ridge 26°N. Journal of Geophysical Research, 100: 17855–17862.CrossRefGoogle Scholar
  31. Laurila, T. E., Hannington, M. D., Leybourne, M., Petersen, S., Devey, C. W., and Garbe-Schonberg, D., 2015. New insights into the mineralogy of the Atlantis II Deep metalliferous sediments, Red Sea. Geochemistry,Geophysics, Geosystems, 16 (12): 4449–4478.CrossRefGoogle Scholar
  32. Laurila, T. E., Hannington, M. D., Petersen, S., and Garbe-Schonberg, D., 2014. Early depositional history of metalliferous sediments in the Atlantis II Deep of the Red Sea: Evidence from rare earth element geochemistry. Geochimica et Cosmochim Acta, 126: 146–168.CrossRefGoogle Scholar
  33. Li, Z., Chu, F., Jin, L., Li, X., Dong, Y., Chen, L., and Zhu, J., 2016. Major and trace element composition of surface sediments from the Southwest Indian Ridge: Evidence for the incorporation of a hydrothermal component. Acta Oceanolo-gica Sinica, 35: 101–108.CrossRefGoogle Scholar
  34. Li, S. Z., Suo, Y. H., Yu, S., Zhao, S. J., Dai, L. M., Cao, H. H., Zhang, Z., Liu, W. Y., and Zang, G. Y., 2015. Morpho-tectonics and tectonic processes of the southwest Indian Ocean. Geotectonica et Metallogenia, 1: 15–29.Google Scholar
  35. Mantyla, A. W., and Reid, J. L., 1995. On the origins of deep and bottom waters of the Indian Ocean. Journal of Geophysical Research, 100: 2417–2439.CrossRefGoogle Scholar
  36. Meylan, M. A., Glasby, G. P., Knedler, K. E., and Johnston, J. H., 2012. Metalliferous deep-sea sediments. Handbook of Strata-Bound and Stratiform Ore Deposits, 9: 77–178.Google Scholar
  37. Moriyama, T., Myawaki, R., Yokoyama, K., Matsubara, S., Hirano, H., Murakami, H., and Watanabe, Y., 2011. Wakefieldite-(Nd), a new neodymium vanadate mineral in the arase stratiform ferromanganese deposit, Kochi Prefecture, Japan. Resource. Geology, 61: 101–110.CrossRefGoogle Scholar
  38. Muller, M. R., Minshull, T. A., and White, R. S., 1999. Segmentation and melt supply at the Southwest Indian Ridge. Geology, 27: 867–870.CrossRefGoogle Scholar
  39. Nayak, B., Halbach, P., Pracejus, B., and Munchd, U., 2014. Massive sulfides of Mount Jourdanne along the super-slow spreading Southwest Indian Ridge and their genesis. Ore Geology Reviews, 63: 115–128.CrossRefGoogle Scholar
  40. Petschick, R., Kuhn, G., and Gingele, F., 1996. Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Marine Geology, 130: 203–229.CrossRefGoogle Scholar
  41. Riley, J. P., and Chester, R., 2016. Chemical Oceanography. Academic press, London, 1–414.Google Scholar
  42. Severmann, S., Mils, R. A., Palmer, M. R., and Fallick, A. E., 2004. The origin of clay minerals in active and relict hydro-thermal deposits. Geochimica et Cosmochimica Acta, 68: 73–88, DOI: Scholar
  43. Shilov, V. V., Bel’tenev, V. E., Ivanov, V. N., Cherkashev, G. A., Rozhdestvenskaya, I. I., Gablina, I. F., Dobretsova, I. G., Narkevskii, E. V., Gustaitis, A. N., and Kuznetsov, V. Y., 2012. New hydrothermal ore fields in the Mid-Atlantic Ridge: Zenith-Victoria (20°08′N) and Petersburg (19°52′N). Doklady Earth Sciences, 442: 63–69.CrossRefGoogle Scholar
  44. Sun, X. X., 2011. Study on the suspended particulate minerals in the water column in the Eastern Equatorial Pacific Ocean and hydrothermal active areas in the Southwest Indian Ocean. PhD thesis. Ocean University of China.Google Scholar
  45. Tao, C., Lin, J., Guo, S., Chen, Y. J., Wu, G., Han, X., German, C. R., Yoerger, D. R., Zhou, N., Li, H., Su, X., and Zhu, J., 2012. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 40: 47–50, DOI: Scholar
  46. Tao, C. H., Li, H. M., Huang, W., Han, X. Q., Wu, G. H., Su, X., Zhou, N., Lin, J., He, Y. H., and Zhou, J. P., 2011. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chinese Science Bulletin, 56: 2828–2838, DOI: Scholar
  47. Toner, B. M., Fakra, S. C., Manganini, S. J., Santelli, C. M., Marcus, M. A., Moffett, J. W., Rouxel, O., German, C. R., and Edwards, K. J., 2009. Preservation of iron (II) by carbonrich matrices in a hydrothermal plume. Nature Geoscience, 2: 197–201.CrossRefGoogle Scholar
  48. Weaver, C. E., 1989. Clay, muds and shales. In: Developments in Sedimentology. Elsevier, Amsterdam, 1–819.Google Scholar
  49. Wolfgang, B., Banerjee, N. R., Dick, H. J. B., and Baker, E. T., 2013. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°- 16°E. Geochemistry, Geophysics, Geosystems, 3 (7): 1–14.Google Scholar
  50. Ye, J., Shi, X. F., Yang, Y. M., Liu, J. H., Zhou, G. F., and Li, N. S., 2011. Mineralogy of sulfides from ultraslow spreading Southwest Indian Ridge 49.6°E hydrothermal field and its metallogenie significance. Acta Mineralogica Sinica, 31 (1): 17–29 (in Chinese with English abstract).Google Scholar
  51. Yu, M., Su, X., Tao, C. H., Wu, G. H., Li, H. M., and Lou, H. L., 2013. Petrological and geochemistry features of basalts at 49.6°E and 50.5°E hydrothermal fields along the Southwest Indian Ridge. Geoscience, 27 (3): 497–508 (in Chinese with English abstract).Google Scholar
  52. Zhang, T., Lin, J., and Gao, J. Y., 2011. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: Implications on the formation of oceanic plateaus and intra-plate seamounts. Science China Earth Sciences, 54: 1177–1188, DOI: Scholar
  53. Zhou, H., and Dick, H. J. B., 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature, 494: 195–200, DOI: Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2020

Authors and Affiliations

  1. 1.Key Laboratory of Submarine Geosciences and Technology, MOEOcean University of ChinaQingdaoChina
  2. 2.Laboratory for Marine GeologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations