Journal of Ocean University of China

, Volume 18, Issue 6, pp 1443–1450 | Cite as

Characterization and Functional Study on Octopus ocellatus Interleukin-17

  • Zan Li
  • Tingting Fan
  • Xintian Liu
  • Xiumei Liu
  • Weijun Wang
  • Qianqian Wang
  • Lunhe You
  • Lei Wang
  • Xiumei Wei
  • Jianmin YangEmail author


Interleukin-17 (IL-17), a prototype member of IL-17 family, plays an important role in defending against extracellular pathogens as a pro-inflammatory cytokine. The function and distribution of IL-17 have been extensively studied in many vertebrates. However, few study has focused on the role of IL-17 in invertebrates, especially in mollusks. In this study, an IL-17 homolog was identified in Octopus ocellatus, which was designated as OoIL-17. The phylogenetic analysis showed that OoIL-17 is clustered well with other invertebrate IL-17, indicating it is highly similar with the IL-17 of other invertebrates. The expression of OoIL-17 gene was analyzed with qRT-PCR in a variety of healthy tissues and the hemocytes infected with Vibro anguillarum or Micrococcus luteus. The mRNA of OoIL-17 gene is constitutively expressed at different levels in all examined tissues of healthy O. ocellatus, including mantle, stomach, hemocytes, muscle, gonad, hepatopancreas, systemic heart and gill. The lowest expression was observed in mantle while the highest was observed in hepatopancreas. The expression level of OoIL-17 gene is significantly up-regulated in O. ocellatus hemocytes upon infection with V. anguillarum and M. luteus, indicating its active involvement in the host immune response against bacterial pathogens. The results laid the foundation for further understanding the innate immune mechanisms of IL-17 in O. ocellatus and mollusks.

Key words

IL-17 Octopus ocellatus Vibro anguillarum Micrococcus luteus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the earmarked fund for the Modern Agro-Industry Technology Research System (No. CARS-49), the Natural Science Foundation of Shandong Province (No. ZR2019BC052), and the Marine and Fisheries Science and Technology Innovation Program of Shan- dong Province (No. 2017YY04).


  1. Aas, K., 2010. Treatment with a neutralizing anti-murine inter-leukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum, 50 (2): 650–659.Google Scholar
  2. Bagiolini, M., 1998. Chemokines and leukocyte traffic. Nature, 392 (6676): 565–568.CrossRefGoogle Scholar
  3. Bessis, N., and Boissier, M. C., 2001. Novel pro-inflammatory interleukins: potential therapeutic targets in rheumatoid arthritis. Joint Bone Spine Revue Du Rhumatisme, 68 (6): 477–481.CrossRefGoogle Scholar
  4. Cerenius, L., Jiravanichpaisal, P., Liu, H., and Soderhall, I., 2010. Crustacean immunity. Oxygen Transport to Tissue XXXIII, 708 (92): 239–259.Google Scholar
  5. Chen, S., Chinnaswamy, A., and Biswas, S. K., 2007. Cell interaction knowledgebase: An online database for innate immune cells, cytokines and chemokines. Silico Biology, 7 (6): 569–574.Google Scholar
  6. Fujino, S., Andoh, A., Bamba, S., Ogawa, A., Hata, K., and Araki, Y., 2003. Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 52 (1): 65–70.CrossRefGoogle Scholar
  7. Gaffen, S. L., 2004. Biology of recently discovered cytokines: Interleukin-17-α unique inflammatory cytokine with roles in bone biology and arthritis. Arthritis Research & Therapy, 6 (6): 240.CrossRefGoogle Scholar
  8. Gaffen, S. L., 2009. Structure and signaling in the IL-17 receptor family. Nature Reviews Immunology, 9 (11): 556–567.CrossRefGoogle Scholar
  9. Gerhardt, S., Abbott, W. M., Hargreaves, D., Pauptit, R. A., Davies, R. A., and Needham, M. R., 2009. Structure of IL-17A in complex with a potent, fully human neutralizing antibody. Journal of Molecular Biology, 394: 905–921.CrossRefGoogle Scholar
  10. Gunimaladevi, I., Savan, R., and Sakai, M., 2006. Identification, cloning and characterization of interleukin-17 and its family from zebrafish. Fish & Shellfish Immunology, 21 (4): 393–403.CrossRefGoogle Scholar
  11. Hymowitz, S. G., 2014. IL-17s adopt a cystine knot fold: Structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO Journal, 20 (19): 5332–5341.CrossRefGoogle Scholar
  12. Iwakura, Y., Ishigame, H., Saijo, S., and Nakae, S., 2011. Functional specialization of interleukin-17 family members. Immunity, 34 (2): 149–162.CrossRefGoogle Scholar
  13. Kawaguchi, M., Adachi, M., Oda, N., Kokubu, F., and Huang, S. K., 2004. IL-17 cytokine family. Journal of Allergy & Clinical Immunology, 114 (6): 1265–1273.CrossRefGoogle Scholar
  14. Kazunori, H., Akira, A., Mitsue, S., Sanae, F., Shigeki, B., and Yoshio, A., 2002. IL-17 stimulates inflammatory responses via nf-kappab and map kinase pathways in human colonic myofibroblasts. American Journal of Physiology-Gastrointestinal and Liver Physiology, 282 (6): 10–35.Google Scholar
  15. Kong, P. F., Zhang, H., and Wang, L. L., 2010. AiC1qDC-1, a novel gC1q-domain-containing protein from bay scallop Argopecten irradians with fungi agglutinating activity. Developmental & Comparative Immunology, 34 (8): 837–846.CrossRefGoogle Scholar
  16. Kono, T., Korenaga, H., and Sakai, M., 2011. Genomics of fish IL-17 ligand and receptors: A review. Fish & Shellfish Immunology, 31 (5): 635–6431.CrossRefGoogle Scholar
  17. Korenaga, H., Kono, T., and Sakai, M., 2010. Isolation of seven IL-17 family genes from the Japanese pufferfish Takifugu rubripes. Fish & Shellfish Immunology, 28 (5): 809–818.CrossRefGoogle Scholar
  18. Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B., and Sedgwick, J. D., 2005. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. Journal of Experimental Medicine, 201 (2): 233–240.CrossRefGoogle Scholar
  19. Lemaitre, B., and Hoffmann, J., 2007. The host defense of Drosophila melanogaster. Annual Review of Immunology, 25 (1): 697–743.CrossRefGoogle Scholar
  20. Li, J., Zhang, Y., and Zhang, Y., 2014. Genomic characterization and expression analysis of five novel IL-17 genes in the Pacific oyster, Crassostrea gigas. Fish & Shellfish Immunology, 40 (2): 455–465.CrossRefGoogle Scholar
  21. Min, W., and Lillehoj, H. S., 2002. Isolation and characterization of chicken interleukin-17 cDNA. Journal of Interferon & Cytokine Research, 22 (11): 1123–1128.CrossRefGoogle Scholar
  22. Moseley, T. A., Haudenschild, D. R., and Rose, L., 2003. Interleukin-17 family and IL-17 receptors. Cytokine & Growth Factor Reviews, 14 (2): 155–174.CrossRefGoogle Scholar
  23. Nakae, S., Nambu, A., Sudo, K., and Iwakura, Y., 2003. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. Journal of Immunology, 171 (11): 6173–6177.CrossRefGoogle Scholar
  24. Pappu, R., Ramirez-Carrozzi, V., Ota, N., Ouyang, W., and Hu, Y., 2010. The IL-17 family cytokines in immunity and disease. Journal of Clinical Immunology, 30 (2): 185–195.CrossRefGoogle Scholar
  25. Park, H., Li, Z., Yang, X. O., Chang, S. H., Nurieva, R., and Wang, Y. H., 2005. A distinct lineage of cd4 t cells regulates tissue inflammation by producing interleukin 17. Nature Immunology, 6 (11): 1133–1141.CrossRefGoogle Scholar
  26. Pfeffer, S. R., and Rothman, J. E., 1987. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annual Review of Biochemistry, 56 (1): 829–852.CrossRefGoogle Scholar
  27. Riollet, C., Mutuel, D., and Duonorcérutti, M., 2006. Determination and characterization of bovine interleukin-17 cDNA. Journal of Interferon and Cytokine Research, 26 (3): 141–149.CrossRefGoogle Scholar
  28. Roberts, S., Gueguen, Y., and Lorgeril, J. D., 2008. Rapid accumulation of an interleukin 17 homolog transcript in Crassostrea gigas hemocytes following bacterial exposure. Developmental & Comparative Immunology, 32 (9): 1099–1104.CrossRefGoogle Scholar
  29. Rouvier, E., Luciani, M. F., Mattéi, M. G., Denizot, F., and Golstein, P., 1993. Ctla-8, cloned from an activated T cell, bearing au-rich messenger RNA instability sequences, and homologous to a Herpesvirus saimiri gene. Journal of Immunology, 150 (12): 5445–5456.Google Scholar
  30. Valenzuela, M. V., and Gallardo, E. C., 2014. Molecular cloning and expression of IRAK-4, IL-17 and I-ΰB genes in Haliotis rufescens challenged with Vibrio anguillarum. Fish & Shellfish Immunology, 36 (2): 503–509.CrossRefGoogle Scholar
  31. Wei, X., Xu, J., and Yang, J., 2015. Involvement of a Serpin serine protease inhibitor (OoSerpin) from mollusc Octopus ocellatus, in antibacterial response. Fish & Shellfish Immunology, 42 (1): 79–87.CrossRefGoogle Scholar
  32. Wei, X., Yang, J., and Yang, J., 2012. A four-domain Kunitztype proteinase inhibitor from Solen grandis is implicated in immune response. Fish & Shellfish Immunology, 33 (6): 1276–1284.CrossRefGoogle Scholar
  33. Witowski, J., Ksiazek, K., and Jörres, A., 2004. Interleukin-17: A mediator of inflammatory responses. Cellular & Molecular Life Sciences Cmls, 61 (5): 567–579.CrossRefGoogle Scholar
  34. Wu, S. Z., Huang, X. D., and Li, Q., 2013. Interleukin-17 in pearl oyster (Pinctada fucata): molecular cloning and functional characterization. Fish & Shellfish Immunology, 34 (5): 1050–1056.CrossRefGoogle Scholar
  35. Yao, Z., Fanslow, W. C., Seldin, M. F., Rousseau, A. M., Painter, S. L., and Comeau, M. R., 1995. Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity, 187 (9): 811–821.CrossRefGoogle Scholar
  36. Zhang, R., Wang, M., and Xia, N., 2016. Cloning and analysis of gene expression of interleukin-17 homolog in triangle-shell pearl mussel, Hyriopsis cumingii, during pearl sac formation. Fish & Shellfish Immunology, 52: 151–156.CrossRefGoogle Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Zan Li
    • 1
  • Tingting Fan
    • 1
  • Xintian Liu
    • 2
  • Xiumei Liu
    • 3
  • Weijun Wang
    • 1
  • Qianqian Wang
    • 1
  • Lunhe You
    • 1
  • Lei Wang
    • 4
  • Xiumei Wei
    • 5
  • Jianmin Yang
    • 1
    Email author
  1. 1.School of AgricultureLudong UniversityYantaiChina
  2. 2.Weihai Fisheries Technology Extension CenterWeihaiChina
  3. 3.College of Life SciencesYantai UniversityYantaiChina
  4. 4.College of Life SciencesLudong UniversityYantaiChina
  5. 5.School of Life SciencesEast China Normal UniversityShanghaiChina

Personalised recommendations