Advertisement

Journal of Ocean University of China

, Volume 18, Issue 6, pp 1427–1442 | Cite as

The Mechanisms and Applications of Quorum Sensing (QS) and Quorum Quenching (QQ)

  • Jingjing Zhang
  • Tao Feng
  • Jiayi Wang
  • Yan WangEmail author
  • Xiao-Hua Zhang
Article
  • 32 Downloads

Abstract

Quorum sensing (QS) is a regulatory system that regulates the behavior of microbial populations by sensing the concentration of signal molecules that are spontaneously produced and released by bacteria. The strategy of blocking the QS system and inhibiting the production of virulence factors is termed as quorum quenching (QQ). This strategy attenuates virulence without killing the pathogens, thereby weakening the selective pressure on pathogens and postponing the evolution of QQ-mediated drug resistance. In recent years, there have been significant theoretical and practical developments in the field of QS and QQ. In particular, with the development and utilization of marine resources, more and more marine microbial species have been found to be regulated by these two mechanisms, further promoting the research progress of QS and QQ. In this review, we described the diversity of QS signals and QS-related regulatory systems, and then introduced mechanisms related to QS interference, with particular emphasis on the description of natural QQ enzymes and chemicals acting as QS inhibitors. Finally, the exploitation of quorum sensing quenchers and the practical application of QQ were introduced, while some QQ strategies were proposed as promising tools in different fields such as medicine, aquaculture, agriculture and biological pollution prevention areas.

Key words

quorum sensing quorum quenching marine microorganisms antibiotic resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are very grateful to Dr. Yunxuan Xie in Tianjin University for his suggestions and language modification. This work was supported by the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST) (No. YESS20160009), and the National Natural Science Foundation of China (Nos. 31870023, 31571970 and 41506160).

References

  1. Ahlgren, N. A., Harwood, C. S., Schaefer, A. L., Giraud, E., and Greenberg, E. P., 2011. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proceedings of the National Academy of Sciences of the United States of America, 108: 7183–7188, DOI:  https://doi.org/10.1073/pnas.1103821108.CrossRefGoogle Scholar
  2. Albuquerque, P., and Casadevall, A., 2012. Quorum sensing in fungi-A review. Medical Mycology, 50: 337–345, DOI:  https://doi.org/10.3109/13693786.2011.652201.CrossRefGoogle Scholar
  3. Amaya, S., Pereira, J. A., Borkosky, S. A., Valdez, J. C., Bardón, A., and Arena, M. E., 2012. Inhibition of quorum sensing in Pseudomonas aeruginosa by sesquiterpene lactones. Phytomedicine, 19: 1173–1177, DOI:  https://doi.org/10.1016/j.phymed.2012.07.003.CrossRefGoogle Scholar
  4. Bauer, W. D., and Robinson, J. B., 2002. Disruption of bacterial quorum sensing by other organisms. Current Opinion in Biotechnology, 13: 234–237, DOI:  https://doi.org/10.1016/S0958-1669(02)00310-5.CrossRefGoogle Scholar
  5. Biswa, P., and Doble, M., 2013. Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water. FEMS Microbiology Letters, 343: 34–41.CrossRefGoogle Scholar
  6. Borthwick, A. D., 2012. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chemical Reviews, 112: 3641–3716, DOI:  https://doi.org/10.1021/cr200398y.CrossRefGoogle Scholar
  7. Brachmann, A. O., Brameyer, S., Kresovic, K., Hitkova, I., Kopp, Y., Manske, C., Schubert, C., Bode, H. B., and Heermann, R., 2013. Pyrones as bacterial signaling molecules. Nature Chemical Biology, 9: 573–578.CrossRefGoogle Scholar
  8. Brackman, G., Celen, S., Hillaert, U., Calenbergh, S. V., Cos, P., Maes, L., Nelis, H. J., and Coenye, T., 2011. Structure-activity relationship of cinnamaldehyde analogs as inhibitors of AI-2 based quorum sensing and their effect on virulence of Vibrio spp. PLoS One, 6: e16084.CrossRefGoogle Scholar
  9. Brameyer, S., Kresovic, D., Bode, H. B., and Heermann, R., 2015. Dialkylresorcinols as bacterial signaling molecules. Proceedings of the National Academy of Sciences of the United States of America, 112: 572–577.CrossRefGoogle Scholar
  10. Bzdrenga, J., Daude, D., Remy, B., Jacquet, P., Plener, L., Elias, M., and Chabriere, E., 2017. Biotechnological applications of quorum quenching enzymes. Chemico-Biological Interactions, 267: 104–115, DOI:  https://doi.org/10.1016/j.cbi.2016.05.028.CrossRefGoogle Scholar
  11. Cao, H., Yang, M., Zheng, H., Zhang, J., Zhong, Z., and Zhu, J., 2009. Complex quorum-sensing regulatory systems regulate bacterial growth and symbiotic nodulation in Mesorhizobium tianshanense. Archives of Microbiology, 191: 283–289, DOI:  https://doi.org/10.1007/s00203-008-0454-7.CrossRefGoogle Scholar
  12. Chen, G., Swem, L. R., Swem, D. L., Stauff, D. L., O’Loughlin, C. T., Jeffrey, P. D., Bassler, B. L., and Hughson, F. M., 2011. A strategy for antagonizing quorum sensing. Molecular Cell, 42: 199–209.CrossRefGoogle Scholar
  13. Chu, W., Zhou, S., Zhu, W., and Zhuang, X., 2014. Quorum quenching bacteria Bacillus sp. QSI-1 protect zebrafish (Danio rerio) from Aeromonas hydrophila infection. Scientific Reports, 4: 5446, DOI:  https://doi.org/10.1038/srep05446.CrossRefGoogle Scholar
  14. Daneshvar Alavi, H. E., and Truelstrup Hansen, L., 2013. Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces. Biofouling, 29: 1253–1268, DOI:  https://doi.org/10.1080/08927014.2013.835805.CrossRefGoogle Scholar
  15. De Lamo Marin, S., Xu, Y., Meijler, M. M., and Janda, K. D., 2007. Antibody catalyzed hydrolysis of a quorum sensing signal found in gram-negative bacteria. Bioorganic & Medicinal Chemistry Letters, 17: 1549–1552, DOI:  https://doi.org/10.1016/j.bmcl.2006.12.118.CrossRefGoogle Scholar
  16. Defoirdt, T., 2018. Quorum-sensing systems as targets for antivirulence therapy. Trends in Microbiology, 26: 313–328, DOI:  https://doi.org/10.1016/j.tim.2017.10.005.CrossRefGoogle Scholar
  17. Defoirdt, T., Boon, N., Bossier, P., and Verstraete, W., 2004. Disruption of bacterial quorum sensing: An unexplored strategy to fight infections in aquaculture. Aquaculture, 240: 69–88.CrossRefGoogle Scholar
  18. Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W., and Bossier, P., 2008. Quorum sensing and quorum quenching in Vibrio harveyi: Lessons learned from in vivo work. The ISME Journal, 2: 19–26.CrossRefGoogle Scholar
  19. Defoirdt, T., Miyamoto, C. M., Wood, T. K., Meighen, E. A., Sorgeloos, P., Verstraete, W., and Bossier, P., 2007. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2 (5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein LuxR. Environmental Microbiology, 9: 2486–2495.CrossRefGoogle Scholar
  20. Diggle, S. P., Cornelis, P., Williams, P., and Cámara, M., 2006. 4-Quinolone signalling in Pseudomonas aeruginosa: Old molecules, new perspectives. International Journal of Medical Microbiology, 296: 83–91.CrossRefGoogle Scholar
  21. Dobretsov, S., Teplitski, M., Bayer, M., Gunasekera, S., Proksch, P., and Paul, V. J., 2011. Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling, 27: 893–905.CrossRefGoogle Scholar
  22. Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F., and Zhang, L. H., 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411: 813–817.CrossRefGoogle Scholar
  23. Dong, Y. H., Xu, J. L., Li, X. Z., and Zhang, L. H., 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorumsensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences of the United States of America, 97: 3526–3531, DOI:  https://doi.org/10.1073/pnas.060023897.CrossRefGoogle Scholar
  24. Fong, J., Zhang, C., Yang, R., Boo, Z. Z., Tan, S. K., Nielsen, T. E., Givskov, M., Liu, X. W., Bin, W., Su, H., and Yang, L., 2018. Combination therapy strategy of quorum quenching enzyme and quorum sensing inhibitor in suppressing multiple quorum sensing pathways of Pseudomonas aeruginosa. Scientific Reports, 8: 1155.CrossRefGoogle Scholar
  25. Fuchs, S. W., Bozhüyük, K. A., Kresovic, D., Grundmann, F., Dill, V., Brachmann, A. O., Waterfield, N. R., and Bode, H. B., 2013. Formation of 1,3-cyclohexanediones and resorcinols catalyzed by a widely occurring ketosynthase. Angewandte Chemie, International Edition in English, 52: 4108–4112, DOI:  https://doi.org/10.1002/anie.201210116.CrossRefGoogle Scholar
  26. Ganin, H., Rayo, J., Amara, N., Levy, N., Krief, P., and Meijler, M. M., 2013. Sulforaphane and erucin, natural isothiocyanates from broccoli, inhibit bacterial quorum sensing. MedChemComm, 4: 175–179.CrossRefGoogle Scholar
  27. García, M. P., D’Alvise, P., and Gram, L., 2013. Disruption of cell-to-cell signaling does not abolish the antagonism of Phaeobacter gallaeciensis toward the fish pathogen Vibrio anguillarum in algal systems. Applied and Environmental Microbiology, 79: 5414–5417.CrossRefGoogle Scholar
  28. Giacometti, A., Cirioni, O., Ghiselli, R., Dell’Acqua, G., Orlando, F., D’Amato, G., Mocchegiani, F., Silvestri, C., DelPrete, S. M., Rocchi, M., Balaban, N., Saba, V., and Scalise, G., 2005. RNAIII-inhibiting peptide improves efficacy of clinically used antibiotics in a murine model of Staphylococcal sepsis. Peptides, 26: 169–175, DOI:  https://doi.org/10.1016/j.peptides.2004.09.018.CrossRefGoogle Scholar
  29. Guo, X., Zhang, L. Y., Wu, S. C., Xia, F., Fu, Y. X., Wu, Y. L., Leng, C. Q., Yi, P. F., Shen, H. Q., Wei, X. B., and Fu, B. D., 2014. Andrographolide interferes quorum sensing to reduce cell damage caused by avian pathogenic Escherichia coli. Veterinary Microbiology, 174: 496–503, DOI:  https://doi.org/10.1016/j.vetmic.2014.09.021.CrossRefGoogle Scholar
  30. Han, Y., Hou, S., Simon, K. A., Ren, D., and Luk, Y-Y., 2008. Identifying the important structural elements of brominated furanones for inhibiting biofilm formation by Escherichia coli. Bioorganic & Medicinal Chemistry Letters, 18: 1006–1010.CrossRefGoogle Scholar
  31. Harms, A., Maisonneuve, E., and Gerdes, K., 2016. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science, 354: f4268, DOI:  https://doi.org/10.1126/science.aaf4268.CrossRefGoogle Scholar
  32. Hmelo, L. R., 2017. Quorum sensing in marine microbial environments. Annual Review of Marine Science, 9: 257–281.CrossRefGoogle Scholar
  33. Hume, E., Baveja, J., Muir, B., Schubert, T. L., Kumar, N., Kjelleberg, S., Griesser, H. J., Thissen, H., Read, R., Poole-Warren, L. A., Schindhelm, K., and Willcox, M., 2004. The control of Staphylococcus epidermidis biofilm formation and in vivo infection rates by covalently bound furanones. Biomaterials, 25: 5023–5030.CrossRefGoogle Scholar
  34. Jakobsen, T. H., Bragason, S. K., Phipps, R. K., Christensen, L. D., van Gennip, M., Alhede, M., Skindersoe, M., Larsen, T. O., Høiby, N., Bjarnsholt, T., and Givskov, M., 2012. Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 78: 2410–242CrossRefGoogle Scholar
  35. Jatt, A. N., Tang, K., Liu, J., Zhang, Z., and Zhang, X-H., 2015. Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9. FEMS Microbiology Ecology, 91: 1–13.CrossRefGoogle Scholar
  36. Jones, M. B., Jani, R., Ren, D., Wood, T. K., and Blaser, M. J., 2005. Inhibition of Bacillus anthracis growth and virulence-gene expression by inhibitors of quorum-sensing. The Journal of Infectious Diseases, 191: 1881–1888.CrossRefGoogle Scholar
  37. Jones, S. M., Dang, T. T., and Martinuzzi, R., 2009. Use of quorum sensing antagonists to deter the formation of crystalline Proteus mirabilis biofilms. International Journal of Antimicrobial Agents, 34: 360–364.CrossRefGoogle Scholar
  38. Kügler, S., Sebghati, T. S., Eissenberg, L. G., and Goldman, W. E., 2000. Phenotypic variation and intracellular parasitism by Histoplasma Capsulatum. Proceedings of the National Academy of Sciences of the United States of America, 97: 8794–8798, DOI:  https://doi.org/10.1073/pnas.97.16.8794.CrossRefGoogle Scholar
  39. Kalaiarasan, E., Kottha, T., Harish, B. N., Gnanasambandam, V., Sali, V. K., and John, J., 2017. Inhibition of quorum sensing-controlled biofilm formation in Pseudomonas aeruginosa by quorum-sensing inhibitors. Microbial Pathogenesis, 111: 99–107.CrossRefGoogle Scholar
  40. Kaufmann, G. F., Sartorio, R., Lee, S. H., Mee, J. M., Altobell, L. J., Kujawa, D. P., Jeffries, E., Clapham, B., Meijler, M. M., and Janda, K. D., 2006. Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. Journal or the American Chemical Society, 128: 2802–2803, DOI:  https://doi.org/10.1021/ja0578698.CrossRefGoogle Scholar
  41. Kelly, R. C., Bolitho, M. B., Higgins, D. A., Lu, W., Ng, W. L., Jeffrey, P. D., Rabinowitz, J. D., Semmelhack, M. F., Hughson, F. M., and Bassler, B. L., 2009. The Vibrio cholerae quorum-sensing autoinducer CAI-1: Analysis of the biosynthetic enzyme CqsA. Nature Chemical Biology, 5: 891–895, DOI:  https://doi.org/10.1038/nchembio.237.CrossRefGoogle Scholar
  42. Kim, J. S., Kim, Y. H., Seo, Y. W., and Park, S., 2007. Quorum sensing inhibitors from the red alga, Ahnfeltiopsis flabelliformis. Biotechnology and Bioprocess Engineering, 12: 308.CrossRefGoogle Scholar
  43. Kiran, M. D., Adikesavan, N. V., Cirioni, O., Giacometti, A., Silvestri, C., Scalise, G., Ghiselli, R., Saba, V., Orlando, F., Shoham, M., and Balaban, N., 2008. Discovery of a quorum-sensing inhibitor of drug-resistant Staphylococcal infections by structure-based virtual screening. Molecular Pharmacology, 73: 1578–1586, DOI:  https://doi.org/10.1124/mol.107.044164.CrossRefGoogle Scholar
  44. Kleerebezem, M., Quadri, L. E., Kuipers, O. P., and De Vos, W. M., 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in gram-positive bacteria. Molecular Microbiology, 24: 895–904.CrossRefGoogle Scholar
  45. Kravchenko, V. V., Kaufmann, G. F., Mathison, J. C., Scott, D. A., Katz, A. Z., and Grauer, D. C., 2008. Modulation of gene expression via disruption of NF-κB signaling by a bacterial small molecule. Science, 321: 259–263, DOI:  https://doi.org/10.1126/science.1156499.CrossRefGoogle Scholar
  46. Kwan, J. C., Meickle, T., Ladwa, D., Teplitski, M., Paul, V., and Luesch, H., 2011. Lyngbyoic acid, a ‘tagged’ fatty acid from a marine Cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa. Molecular BioSystems, 7: 1205–1216.CrossRefGoogle Scholar
  47. LaSarre, B., and Federle, M. J., 2013. Exploiting quorum sensing to confuse bacterial pathogens. Microbiology and Molecular Biology Reviews, 77: 73–111.CrossRefGoogle Scholar
  48. Leadbetter, J. R., and Greenberg, E. P., 2000. Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus. Journal of Bacteriology, 182: 6921–6926.CrossRefGoogle Scholar
  49. Lebeer, S., De Keersmaecker, S. C., Verhoeven, T. L., Fadda, A. A., Marchal, K., and Vanderleyden, J., 2007. Functional analysis of luxS in the probiotic strain Lactobacillus rhamnosus GG reveals a central metabolic role important for growth and biofilm formation. Journal of Bacteriology, 189: 860–871.CrossRefGoogle Scholar
  50. Lee, B., Yeon, K. M., Shim, J., Kim, S. R., Lee, C. H., Lee, J., and Kim, J., 2014. Effective antifouling using quorum-quenching acylase stabilized in magnetically-separable mesoporous silica. Biomacromolecules, 15: 1153–1159.CrossRefGoogle Scholar
  51. Lee, H., Chang, C. Y., Nardone, G., and Kwon-Chung, K. J., 2007. TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Molecular Microbiology, 64: 591–601, DOI:  https://doi.org/10.1111/j.1365-2958.2007.05666.x.CrossRefGoogle Scholar
  52. Lee, J. H., Wood, T. K., and Lee, J., 2015. Roles of indole as an interspecies and interkingdom signaling molecule. Trends in Microbiology, 23: 707–718.CrossRefGoogle Scholar
  53. Lindemann, A., Pessi, G., Schaefer, A. L., Mattmann, M. E., Christensen, Q. H., Kessler, A., Hennecke, H., Blackwell, H. E., Greenberg, E. P., and Harwood, C. S., 2011. Isovalerylhomoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum. Proceedings of the National Academy of Sciences of the United States of America, 108: 16765–16770, DOI:  https://doi.org/10.1073/pnas.1114125108.CrossRefGoogle Scholar
  54. Manefield, M., Rasmussen, T. B., Henzter, M., Andersen, J. B., Steinberg, P., Kjelleberg, S., and Givskov, M., 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology, 148: 1119–1127.CrossRefGoogle Scholar
  55. Mansson, M., Nielsen, A., Kjœrulff, L., Gotfredsen, C. H., Wietz, M., Ingmer, H., Gram, L., and Larsen, T. O., 2011. Inhibition of virulence gene expression in Staphylococcus aureus by novel depsipeptides from a marine Photobacterium. Marine Drugs, 9: 2537–2552.CrossRefGoogle Scholar
  56. Martins, M. B., and Carvalho, I., 2007. Diketopiperazines: Biological activity and synthesis. Tetrahedron, 63: 9923–9932, DOI:  https://doi.org/10.1016/j.tet.2007.04.105.CrossRefGoogle Scholar
  57. Moreira, C. G., and Sperandio, V., 2010. The Epinephrine/Norepinephrine/Autoinducer-3 interkingdom signaling system in Escherichia coli O157:H7. Advances in Experimental Medicine & Biology, 874: 213–227, DOI:  https://doi.org/10.1007/978-1-4419-5576-0_12.Google Scholar
  58. Murzyn, A., Krasowska, A., Stefanowicz, P., Dziadkowiec, D., and Lukaszewicz, M., 2010. Capric acid secreted by Saccharomyces boulardii inhibits Cancida albicans filamentous growth, adhesion and biofilm formation. PLoS One, 5: e12050, DOI:  https://doi.org/10.1371/journal.pone.0012050.CrossRefGoogle Scholar
  59. Nealson, K. H., and Hastings, J. W., 1979. Bacterial bioluminescence: Its control and ecological significance. Microbiological Reviews, 43: 496–518.Google Scholar
  60. Newman, K. L., Chatterjee, S., Ho, K. A., and Lindow, S. E., 2008. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors. Molecular Plant-Microbe Interactions, 21: 326–334.CrossRefGoogle Scholar
  61. Ng, W. L., and Bassler, B. L., 2009. Bacterial quorum-sensing network architectures. Annual Review of Genetics, 43: 197–222.CrossRefGoogle Scholar
  62. Stoodley, P., Sauer, K., Davies, D. G., and Costerton, J. W., 2002. Biofilms as complex differentiated communities. Annual Review of Microbiology, 56: 187–209, DOI:  https://doi.org/10.1146/annurev.micro.56.012302.160705.CrossRefGoogle Scholar
  63. Packiavathy, I. A. S. V., Priya, S., Pandian, S. K., and Ravi, A. V., 2014. Inhibition of biofilm development of uropathogens by curcumin-An anti-quorum sensing agent from Curcuma longa. Food Chemistry, 148: 453–460.CrossRefGoogle Scholar
  64. Padder, S. A., Prasad, R., and Shah, A. H., 2018. Quorum sensing: A less known mode of communication among fungi. Microbiological Research, 210: 51–58, DOI:  https://doi.org/10.1016/j.micres.2018.03.007.CrossRefGoogle Scholar
  65. Pereira, C. S., Thompson, J. A., and Xavier, K. B., 2013. AI-2-mediated signalling in bacteria. FEMS Microbiology Reviews, 37: 156–181.CrossRefGoogle Scholar
  66. Phuvasate, S., Chen, M. H., and Su, Y. C., 2012. Reductions of Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas) by depuration at various temperatures. Food Microbiology, 31: 51–56.CrossRefGoogle Scholar
  67. Poplawsky, A. R., Walters, D. M., Rouviere, P. E., and Chun, W., 2005. A gene for a dioxygenase-like protein determines the production of the DF signal in Xanthomonas campestris pv. campestris. Molecular Plant Pathology, 6: 653–657.CrossRefGoogle Scholar
  68. Quave, C. L., and Horswill, A. R., 2018. Identification of Staphylococcal quorum sensing inhibitors by quantification of ö-hemolysin with high performance liquid chromatography. Methods in Molecular Biology, 1673: 363–370.CrossRefGoogle Scholar
  69. Ramage, G., Saville, S. P., Wickes, B. L., and Lopez-Ribot, J. L., 2002. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Applied and Environmental Microbiology, 68: 5459–5463, DOI:  https://doi.org/10.1128/aem.68.11.5459-5463.2002.CrossRefGoogle Scholar
  70. Rasko, D. A., Moreira, C. G., Li, D. R., Reading, N. C., Ritchie, J. M., Waldor, M. K., Williams, N., Taussig, R., Wei, S., Roth, M., Hughes, D. T., Huntley, J. F., Fina, M. W., Falck, J. R., and Sperandio, V., 2008. Targeting QseC signaling and virulence for antibiotic development. Science, 321: 1078–1080.CrossRefGoogle Scholar
  71. Rasmussen, T. B., Skindersoe, M. E., Bjarnsholt, T., Phipps, R. K., Christensen, K. B., Jensen, P. O., Andersen, J. B., Koch, B., Larsen, T. O., Hentzer, M., Eberl, L., Hoiby, N., and Givskov, M., 2005. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology, 151: 1325–1340.CrossRefGoogle Scholar
  72. Reen, F. J., Gutiérrez-Barranquero, J. A., and Parages, M. L., 2018. Coumarin: A novel player in microbial quorum sensing and biofilm formation inhibition. Applied Microbiology and Biotechnology, 102: 2063–2073.CrossRefGoogle Scholar
  73. Risoen, P. A., Brurberg, M. B., Eijsink, V. G., and Nes, I. F., 2000. Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus. Molecular Microbiology, 37: 619–628, DOI:  https://doi.org/10.1046/j.1365-2958.2000.02029.x.CrossRefGoogle Scholar
  74. Saenz, H. L., Augsburger, V., Vuong, C., Jack, R. W., Götz, F., and Otto, M., 2000. Inducible expression and cellular location of AgrB, a protein involved in the maturation of the Staphylococcal quorum-sensing pheromone. Archives of Microbiology, 174: 452–455.CrossRefGoogle Scholar
  75. Saurav, K., Bar-Shalom, R., Haber, M., Burgsdorf, I., Oliviero, G., Costantino, V., Morgenstern, D., and Steindler, L., 2016. In search of alternative antibiotic drugs: Quorum-quenching activity in sponges and their bacterial isolates. Frontiers in Microbiology, 7: 416.CrossRefGoogle Scholar
  76. Schaefer, A. L., Greenberg, E. P., Oliver, C. M., Oda, Y., Huang, J. J., Bittan-Banin, G., Peres, C. M., Schmidt, S., Juhaszova, K., Sufrin, J. R., and Harwood, C. S., 2008. A new class of homoserine lactone quorum-sensing signals. Nature, 454: 595–599, DOI:  https://doi.org/10.1038/nature07088.CrossRefGoogle Scholar
  77. Schenk, S. T., Hernández-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., Reichelt, M., Mithöfer, A., Becker, A., Kogel, K. H., and Schikora, A., 2014. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell, 26: 2708–2723.CrossRefGoogle Scholar
  78. Schipper, C., Hornung, C., Bijtenhoorn, P., Quitschau, M., Grond, S., and Streit, W., 2009. Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 75: 224–233.CrossRefGoogle Scholar
  79. Siddiqui, M. F., Sakinah, M., Singh, L., and Zularisam, A. W., 2012. Targeting N-acyl-homoserine-lactones to mitigate membrane biofouling based on quorum sensing using a biofouling reducer. Journal of Biotechnology, 161: 190–197, DOI:  https://doi.org/10.1016/j.jbiotec.2012.06.029.CrossRefGoogle Scholar
  80. Singh, P. K., Schaefer, A. L., Parsek, M. R., Moninger, T. O., Welsh, M. J., and Greenberg, E. P., 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407: 762–764, DOI:  https://doi.org/10.1038/35037627.CrossRefGoogle Scholar
  81. Singh, R., Paul, D., and Jain, R. K., 2006. Biofilms: Implications in bioremediation. Trends in Microbiology, 14: 389–397, DOI:  https://doi.org/10.1016/j.tim.2006.07.001.CrossRefGoogle Scholar
  82. Singh, R., and Ray, P., 2014. Quorum sensing-mediated regulation of Staphylococcal virulence and antibiotic resistance. Future Microbiology, 9: 669–681, DOI:  https://doi.org/10.2217/fmb.14.31.CrossRefGoogle Scholar
  83. Skindersoe, M. E., Ettinger-Epstein, P., Rasmussen, T. B., Bjarnsholt, T., de Nys, R., and Givskov, M., 2008. Quorum sensing antagonism from marine organisms. Marine Biotechnology, 10: 56–63, DOI:  https://doi.org/10.1007/s10126-007-9036-y.CrossRefGoogle Scholar
  84. Suneby, E. G., Herndon, L. R., and Schneider, T. L., 2017. Pseudomonas aeruginosa LasR DNA binding is directly inhibited by quorum sensing antagonists. ACS Infectious Diseases, 3: 183–189, DOI:  https://doi.org/10.1021/acsinfecdis.6b00163.CrossRefGoogle Scholar
  85. Tang, K., Su, Y., Brackman, G., Cui, F., Zhang, Y., Shi, X., Coenye, T., and Zhang, X-H., 2015. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia. Applied and Environmental Microbiology, 81: 774–782.CrossRefGoogle Scholar
  86. Tang, K., Zhang, Y., Yu, M., Shi, X., Coenye, T., Bossier, P., and Zhang, X-H., 2013. Evaluation of a new high-throughput method for identifying quorum quenching bacteria. Scientific Reports, 3: 2935.CrossRefGoogle Scholar
  87. Teasdale, M. E., Donovan, K. A., Forschner-Dancause, S. R., and Rowley, D. C., 2011. Gram-positive marine bacteria as a potential resource for the discovery of quorum sensing inhibitors. Marine Biotechnology, 13: 722–732, DOI:  https://doi.org/10.1007/s10126-010-9334-7.CrossRefGoogle Scholar
  88. Teasdale, M. E., Liu, J., Wallace, J., Akhlaghi, F., and Rowley, D. C., 2009. Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Applied and Environmental Microbiology, 75: 567–572, DOI:  https://doi.org/10.1128/AEM.00632-08.CrossRefGoogle Scholar
  89. Tedder, M. E., Nie, Z., Margosiak, S., Chu, S., Feher, V. A., Almassy, R., Appelt, K., and Yager, K. M., 2004. Structure-based design, synthesis, and antimicrobial activity of purine derived SAH/MTA nucleosidase inhibitors. Bioorganic & Medicinal Chemistry Letters, 14: 3165–3168, DOI:  https://doi.org/10.1016/j.bmcl.2004.04.006.CrossRefGoogle Scholar
  90. Tian, X., He, G-J., Hu, P., Chen, L., Tao, C., Cui, Y. L., Shen, L., Ke, W., Xu, H., Zhao, Y., Xu, Q., Bai, F., Wu, B., Yang, E., Lin, X., and Wang, L., 2018. Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide. Nature Microbiology, 3: 698–707, DOI:  https://doi.org/10.1038/s41564-018-0160-4.CrossRefGoogle Scholar
  91. Vandeputte, O. M., Kiendrebeogo, M., Rajaonson, S., Diallo, B., Mol, A., Jaziri, M. E., and Baucher, M., 2010. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 76: 243–253, DOI:  https://doi.org/10.1128/AEM.01059-09.CrossRefGoogle Scholar
  92. von Bodman, S. B., Willey, J. M., and Diggle, S. P., 2008. Cell-cell communication in bacteria: United we stand. Journal of Bacteriology, 190: 4377–4391, DOI:  https://doi.org/10.1128/JB.00486-08.CrossRefGoogle Scholar
  93. Walters, M., and Sperandio, V., 2006. Quorum sensing in Escherichia coli and Salmonella. International Journal of Medical Microbiology, 296: 125–131, DOI:  https://doi.org/10.1016/j.ijmm.2006.01.041 CrossRefGoogle Scholar
  94. Wongsuk, T., Pumeesat, P., and Luplertlop, N., 2016. Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity. Journal of Basic Microbiology, 56: 440–447, DOI:  https://doi.org/10.1002/jobm.201500759.CrossRefGoogle Scholar
  95. Wu, D., Huang, W., Duan, Q., Li, F., and Cheng, H., 2014. Sodium houttuyfonate affects production of N-acyl homoserine lactone and quorum sensing-regulated genes expression in Pseudomonas aeruginosa. Frontiers in Microbiology, 5: 635, DOI:  https://doi.org/10.3389/fmicb.2014.00635.Google Scholar
  96. Wu, H., Song, Z., Hentzer, M., Andersen, J. B., Molin, S., Givskov, M., and Hoiby, N., 2004. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. Journal of Antimicrobial Chemotherapy, 53: 1054–1061, DOI:  https://doi.org/10.1093/jac/dkh223.CrossRefGoogle Scholar
  97. Xavier, K. B., and Bassler, B. L., 2005. Interference with AI-2-mediated bacterial cell-cell communication. Nature, 437: 750–753, DOI:  https://doi.org/10.1038/nature03960.CrossRefGoogle Scholar
  98. Zhang, G., Zhang, F., Ding, G., Li, J., Guo, X., Zhu, J., Zhou, L., Cai, S., Liu, X., Luo, Y., Zhang, G., Shi, W., and Dong, X., 2012. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. The ISME Journal, 6: 1336–1344, DOI:  https://doi.org/10.1038/ismej.2011.203.CrossRefGoogle Scholar
  99. Zhang, M., Sun, K., and Sun, L., 2008. Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain. Microbiology, 154: 2060–2069, DOI:  https://doi.org/10.1099/mic.0.2008/017343-0.CrossRefGoogle Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Jingjing Zhang
    • 1
  • Tao Feng
    • 1
  • Jiayi Wang
    • 1
  • Yan Wang
    • 1
    • 2
    • 3
    Email author
  • Xiao-Hua Zhang
    • 1
    • 2
    • 3
  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoChina
  2. 2.Laboratory for Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina

Personalised recommendations