Advertisement

Journal of Ocean University of China

, Volume 18, Issue 4, pp 926–932 | Cite as

Fucoxanthin Isolated from Undaria pinnatifida Can Interact with Escherichia coli and lactobacilli in the Intestine and Inhibit the Growth of Pathogenic Bacteria

  • Zonglin Liu
  • Xiaowen Sun
  • Xun Sun
  • Shuhui Wang
  • Ying XuEmail author
Article
  • 9 Downloads

Abstract

Fucoxanthin is a xanthophyll-type carotenoid that provides many benefits to human health. However, the mechanism by which fucoxanthin interacts with microbes and inhibits pathogenic bacteria is unknown. In this study, we investigated the effects of fucoxanthin isolated from the edible seaweed Undaria pinnatifida on pathogenic bacteria Escherichia coli and lactobacilli both in vitro and in vivo. Fucoxanthin strongly inhibited the growth of Gram-positive pathogenic bacteria but was less effective against Gram-negative bacteria. Fucoxanthin extracted from the crude mixture had a recovery rate of 93.38% and a purity of 82.70%, which were higher than those of fucoxanthin extracted using a previous method. Fucoxanthin also promoted the growth of intestinal microbes in mice. Fucoxanthinol, a metabolite of fucoxanthin, was generated in the culture media. Fucoxanthin can be deacetylated into fucoxanthinol not only by conventional digestive enzymes in the digestive tract, but also by E. coli and lactobacilli in the intestine. These results indicate that fucoxanthin interacts with and influences E. coli and lactobacilli in the intestine. Therefore, fucoxanthin isolated from Undaria pinnatifida possibly can be applied in human health maintenance.

Key words

fucoxanthin Undaria pinnatifida pathogenic bacteria antibacterial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Independent Innovation Major Project of Huangdao District, Qingdao City (No. 2014-3-11), and the National Natural Science Foundation of China (No. 31371731).

References

  1. Airanthi, M. K., Sasaki, N., Iwasaki, S., Baba, N., Abe, M., Hosokawa, M., Baba, N., Abe, M., Hosokawa, M., and Miyashita, K., 2011. Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver. Journal of Agricultural and Food Chemistry, 59 (8): 4156–4163, DOI:  https://doi.org/10.1021/jf104643b.CrossRefGoogle Scholar
  2. Asai, A., Sugawara, T., Ono, H., and Nagao, A., 2004. Biotransformation of fucoxanthinol into amarouciaxanthin a in mice and hepg2 cells: Formation and cytotoxicity of fucoxanthin metabolites. Drug Metabolism & Disposition, 32 (2): 205–211, DOI:  https://doi.org/10.1124/dmd.32.2.205.CrossRefGoogle Scholar
  3. Asai, A., Yonekura, L., and Nagao, A., 2008. Low bioavailability of dietary epoxyxanthophylls in humans. British Journal of Nutrition, 100 (02): 273–277, DOI:  https://doi.org/10.1017/s0007114507895468.CrossRefGoogle Scholar
  4. Breemen, R. B. V., Dong, L., and Pajkovic, N. D., 2012. Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. International Journal of Mass Spectrometry, 312 (2): 163–172, DOI:  https://doi.org/10.1016/j.ijms.2011.07.030.CrossRefGoogle Scholar
  5. Burapan, S., Kim, M., and Han, J., 2017. Curcuminoid demethylation as an alternative metabolism by human intestinal microbiota. Journal of Agricultural and Food Chemistry, 65 (16): 3305–3310, DOI:  https://doi.org/10.1021/acs.jafc.7b00943.CrossRefGoogle Scholar
  6. Chen, B., Zhou, G., and Liu, Q., 2001. Study on the effect of carotenoid, sodium taurocholate and free fatty acids on carotenoids uptake by intestinal cells in vitro. Acta Zoonutrimenta Sinica, 13 (2): 47–50, DOI:  https://doi.org/10.3969/j.issn.1006-267X.2001.02.011.Google Scholar
  7. Cheng, R. Y., Li, M., Li, S. S., He, M., Yu, X. H., Shi, L., and He, F., 2017. Vancomycin and ceftriaxone can damage intestinal microbiota and affect the development of the intestinal tract and immune system to different degrees in neonatal mice. Pathogens & Disease, 75 (8): 1–9, DOI:  https://doi.org/10.1093/femspd/ftx104.CrossRefGoogle Scholar
  8. Cho, I., and Blaser, M. J., 2012. The human microbiome: At the interface of health and disease. Nature Reviews Genetics, 13 (4): 260–270, DOI:  https://doi.org/10.1038/nrg3182.CrossRefGoogle Scholar
  9. Colpitts, S. L., Kasper, E. J., Keever, A., Liljenberg, C., Kirby, T., and Magori, K., 2017. A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis. Gut Microbes, 8 (6): 561–573, DOI:  https://doi.org/10.1080/19490976.2017.1353843.CrossRefGoogle Scholar
  10. Devine, D. A., and Hancock, R. E., 2002. Cationic peptides: Distribution and mechanisms of resistance. Current Pharmaceutical Design, 8 (9): 703–714, DOI:  https://doi.org/10.2174/1381612023395501.CrossRefGoogle Scholar
  11. Galasso, C., Corinaldesi, C., and Sansone, C., 2017. Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants, 6 (4): 96–129, DOI:  https://doi.org/10.3390/antiox6040096.CrossRefGoogle Scholar
  12. Gammone, M. A., Riccioni, G., and D’Orazio, N., 2015. Carotenoids: Potential allies of cardiovascular health? Food and Nutrition Research, 59: 26762, DOI:  https://doi.org/10.3402/fnr.v59.26762.CrossRefGoogle Scholar
  13. Guarner, F., and Malagelada, J. R., 2003. Gut flora in health and disease. The Lancet, 361 (9356): 512–519, DOI:  https://doi.org/10.1016/S0140-6736(03)12489-0.CrossRefGoogle Scholar
  14. Gudielurbano, M., and Goñi, I., 2002. Effect of edible seaweeds (Undaria pinnatifida and Porphyra ternera) on the metabolic activities of intestinal microflora in rats. Nutrition Research, 22 (3): 323–331, DOI:  https://doi.org/10.1016/S0271-5317(01)00383-9.CrossRefGoogle Scholar
  15. Habeebullah, S. F. K., Surendraraj, A., and Jacobsen, C., 2018. Isolation of fucoxanthin from brown algae and its antioxidant activity: In vitro and 5% fish oil-in-water emulsion. Journal of the American Oil Chemists Society, 95 (7): 835–843, DOI:  https://doi.org/10.1002/aocs.12092.CrossRefGoogle Scholar
  16. Hu, T., Liu, D., Chen, Y., Wu, J., and Wang, S., 2010. Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. International Journal of Biological Macromolecules, 46 (2): 193–198, DOI:  https://doi.org/10.1016/j.ijbiomac.2009.12.004.CrossRefGoogle Scholar
  17. Hu, X., Li, Y., Li, C., Fu, Y., Cai, F., Chen, Q., and Li, D., 2012. Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Archives of Biochemistry & Biophysics, 519 (1): 59–65, DOI:  https://doi.org/10.1016/j.abb.2012.01.011.CrossRefGoogle Scholar
  18. Jaswir, I., Novirndri, D., Mohd, S. H., and Miyashita, K., 2012. Fucoxanthin extractions of brown seaweeds and analysis of their lipid fraction in methanol. Food Science & Technology International Tokyo, 18 (2): 251–257, DOI:  https://doi.org/10.3136/fstr.18.251.Google Scholar
  19. Johansson, M. A., Sjögren, Y. M., Persson, J. O., Nilsson, C., and Sverremark-Ekström, E., 2011. Early colonization with a group of Lactobacilli decreases the risk for allergy at five years of age despite allergic heredity. PLoS One, 6 (8): e23031, DOI:  https://doi.org/10.1371/journal.pone.0023031.CrossRefGoogle Scholar
  20. Kim, S. M., Jung, Y. J., Kwon, O. N., Cha, K. H., Um, B. H., Chung, D., and Pan, C. H., 2012. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Applied Biochemistry and Biotechnology, 166 (7): 1843–1855, DOI:  https://doi.org/10.1007/s12010-012-9602-2.CrossRefGoogle Scholar
  21. Komba, S., Kotakenara, E., and Tsuzuki, W., 2018. Degradation of fucoxanthin to elucidate the relationship between the fucoxanthin molecular structure and its antiproliferative effect on caco-2 cells. Marine Drugs, 16 (8): 275–284, DOI:  https://doi.org/10.3390/md16080275.CrossRefGoogle Scholar
  22. Lievin, V., Peiffer, I., Hudault, S., Rochat, F., Brassart, D., Neeser, J. R., and Servin, A. L., 2000. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut, 47 (5): 646–652, DOI:  https://doi.org/10.1136/gut.47.5.646.CrossRefGoogle Scholar
  23. Mallett, A. K., Bearne, C. A., and Rowland, I. R., 2010. The influence of incubation pH on the activity of rat and human gut flora enzymes. Journal of Applied Microbiology, 66 (5): 433–437, DOI:  https://doi.org/10.1111/j.1365-2672.1989.tb05112.x.Google Scholar
  24. Manimala, M. R. A., and Murugesan, R., 2014. In vitro antioxidant and antimicrobial activity of carotenoid pigment extracted from Sporobolomyces sp. isolated from natural source. Journal of Applied and Natural Science, 6 (2): 649–653, DOI:  https://doi.org/10.31018/jans.v6i2.511.CrossRefGoogle Scholar
  25. Matsumoto, M., Hosokawa, M., Matsukawa, N., Hagio, M., Shinoki, A., Nishimukai, M., and Hara, H., 2010. Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated rats. European Journal of Nutrition, 49 (4): 243–249, DOI:  https://doi.org/10.1007/s00394-009-0078-y.CrossRefGoogle Scholar
  26. Milani, A., Basirnejad, M., Shahbazi, S., and Bolhassani, A., 2016. Carotenoids: Biochemistry, pharmacology and treatment. British Journal of Pharmacology, 174 (11): 1290–1324, DOI:  https://doi.org/10.1111/bph.13625.CrossRefGoogle Scholar
  27. Miyashita, K., Nishikawa, S., Beppu, F., Tsukui, T., Abe, M., and Hosokawa, M., 2011. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. Journal of the Science of Food & Agriculture, 91 (7): 1166–1174, DOI:  https://doi.org/10.1002/jsfa.4353.CrossRefGoogle Scholar
  28. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., and Medzhitov, R., 2004. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell, 118 (2): 229–241, DOI:  https://doi.org/10.1016/j.cell.2004.07.002.CrossRefGoogle Scholar
  29. Sachindra, N. M., Sato, E., Maeda, H., Hosokawa, M., Niwano, Y., Kohno, M., and Miyashita, K., 2007. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. Journal of Agricultural and Food Chemistry, 55 (21): 8516–8522, DOI:  https://doi.org/10.1021/jf071848a.CrossRefGoogle Scholar
  30. Sanjay, K. R., 2009. Characterization of aspergillus carbonarius mutant in relation to xanthin production, toxicity studies and fermentation conditions for pigment production. Karnataka Journal of Agricultural Sciences, 24 (4): 656–659, DOI:  https://doi.org/10.1093/jac/18.6.656.Google Scholar
  31. Sarmientorubiano, L. A., Zúñiga, M., Pérezmartínez, G., and Yebra, M. J., 2007. Dietary supplementation with sorbitol results in selective enrichment of lactobacilli in rat intestine. Research in Microbiology, 158 (8): 694–701, DOI:  https://doi.org/10.1016/j.resmic.2007.07.007.CrossRefGoogle Scholar
  32. Sugawara, T., Baskaran, V., Tsuzuki, W., and Nagao, A., 2002. Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by caco-2 human intestinal cells and mice. Journal of Nutrition, 132 (5): 946–951, DOI:  https://doi.org/10.1093/jn/132.5.946.CrossRefGoogle Scholar
  33. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., and Gordon, J. I., 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444 (7122): 1027–1031, DOI:  https://doi.org/10.1038/nature05414.CrossRefGoogle Scholar
  34. Ushakumari, U. N., and Ramanujan, R., 2013. Isolation of astaxanthin from marine yeast and study of its pharmacological activity. International Current Pharmaceutical Journal, 2 (3): 67–69, DOI:  https://doi.org/10.3329/icpj.v2i3.13584.CrossRefGoogle Scholar
  35. Velmurugan, G., Ramprasath, T., Gilles, M., Swaminathan, K., and Ramasamy, S., 2017. Gut microbiota, endocrine-disrupting chemicals, and the diabetes epidemic. Trends in Endocrinology & Metabolism, 28 (8): 612–625, DOI:  https://doi.org/10.1016/j.tem.2017.05.001.CrossRefGoogle Scholar
  36. Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., and DuGar, B., 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472 (7341): 57–63, DOI:  https://doi.org/10.1038/nature09922.CrossRefGoogle Scholar
  37. Wang, W., Wang, C., and Yue, S., 2017. Effects of lactobacillus on cholesterolemia and gut flora in hyperlipidemia mice. Chinese Journal of Rehabilitation Medicine, 32 (9): 989–993, DOI:  https://doi.org/10.3969/j.issn.1001-1242.2017.09.004.Google Scholar
  38. Wingerath, T., Stahl, W., and Sies, H., 1995. β-cryptoxanthin selectively increases in human chylomicrons upon ingestion of tangerine concentrate rich in β-cryptoxanthin esters. Archives of Biochemistry & Biophysics, 324 (2): 385–390, DOI:  https://doi.org/10.1006/abbi.1995.0052.CrossRefGoogle Scholar
  39. Wu, W. L., 2017. Association among gut microbes, intestinal physiology, and autism. Ebiomedicine, 25: 11–12, DOI:  https://doi.org/10.1016/j.ebiom.2017.10.013.CrossRefGoogle Scholar
  40. Xia, S., Wang, K., Wan, L., Li, A., Hu, Q., and Zhang, C., 2013. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Marine Drugs, 11 (7): 2667–2681, DOI:  https://doi.org/10.3390/md11072667.CrossRefGoogle Scholar
  41. Yissachar, N., Yan, Z., Ung, L., Lai, N. Y., Mohan, J. F., Ehrlicher, A., and Benoist, C., 2017. An intestinal organ culture system uncovers a role for the nervous system in microbeimmune crosstalk. Cell, 168 (6): 1135–1148, DOI:  https://doi.org/10.1016/j.cell.2017.02.009.CrossRefGoogle Scholar
  42. Zhu, J., Sun, X., Chen, X., Wang, S., and Wang, D., 2016. Chemical cleavage of fucoxanthin from Undaria pinnatifida and formation of apo-fucoxanthinones and apo-fucoxanthinals identified using lc-dad-apci-ms/ms. Food Chemistry, 211 (15): 365–373, DOI:  https://doi.org/10.1016/j.foodchem.2016.05.064.CrossRefGoogle Scholar
  43. Zorofchian, M. S., Karimian, H., Khanabdali, R., Razavi, M., Firoozinia, M., Zandi, K., and Abdul Kadir, H., 2014. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. The Scientific World Journal, 2014: 768323, DOI:  https://doi.org/10.1155/2014/768323.Google Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Zonglin Liu
    • 1
  • Xiaowen Sun
    • 1
  • Xun Sun
    • 1
  • Shuhui Wang
    • 2
  • Ying Xu
    • 1
    Email author
  1. 1.College of Food Science and EngineeringOcean University of ChinaQingdaoChina
  2. 2.Qingdao Municipal Center for Disease Control & PreventionQingdaoChina

Personalised recommendations