Advertisement

Journal of Ocean University of China

, Volume 18, Issue 1, pp 253–259 | Cite as

The Inhibitory Effects of PSS-Loaded Nanoparticles on the Dysfunction of Cardiac Microvascular Endothelia in Rats with Diabetic Cardiomyopathy

  • Nina An
  • Luyan Yu
  • Yi Hu
  • Wenjing Feng
  • Shujuan Shi
  • Honghua Chen
  • Yongjun Mao
Article
  • 15 Downloads

Abstract

Propylene glycol alginate sodium sulfate-loaded nanoparticles (PSS-NP) has been shown potential to prevent the microvascular endothelial injuries caused by diabetic cardiomyopathy (DCM). In this study, we aimed to investigate the effects of PSS-NP on the dysfunction of cardiac microvascular endothelia in streptozotocin (STZ)-induced DCM rat model. Echocardiographic measurements showed a significant improvement of cardiac function in the PSS-NP-treated group. Our results revealed that the abnormalities of cardiac systolic and diastolic functions were suppressed by the treatments of prostaglandin E1 (PGE1), low molecular weight heparin (LMWH), PSS and PSS-NP. Our comparison analysis indicated that PSS-NP showed the strongest inhibitory effects on microvascular endothelial injuries. Transmission electron microscopy analysis demonstrated that PSS-NP protected the cardiac microvascular endothelium and further improved endothelium dysfunction in DCM rats. ELISA and Western blot assays further showed a high efficiency of improving cardiac microvascular endothelial dysfunction with PSS-NP. Our results demonstrated that PSS-NP increased the protein expression of phosphatidylinositol 3-kinase (PI3K)-p85 and vascular endothelial growth factor (VEGF)-A, and the phosphorylation of protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS), which were involved in the amelioration of cardiac microvascular endothelial dysfunction. These data suggest that PSS-NP may be a novel approach to the treatment the coronary microcirculation disorder diseases such as DCM.

Key words

PSS-loaded nanoparticles marine drug DCM microvascular endothelial dysfunction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by grants from the National Natural Science Foundation Project of China (NSFC) (No. 31571829 and No. 31640050) and the People’s Livelihood Science and Technology Project Financially Supported by Qingdao city (No. 15-9-2-75-nsh).

References

  1. Alp, N. J., Mussa, S., Khoo, J., Cai, S., Guzik, T., Jefferson, A., Goh, N., Rockett, K. A., and Channon, K. M., 2003. Tetrahydrobiopterin–dependent preservation of nitric oxide–mediated endothelial function in diabetes by targeted transgenic GTPcyclohydrolase I overexpression. Journal of Clinical Investigation, 112 (5): 725–735. DOI: 10.1172/JCI17786.CrossRefGoogle Scholar
  2. Chen, J., Somanath, P. R., Razorenova, O., Chen, W. S., Hay, N., Bornstein, P., and Byzova, T. V., 2005. Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nature Medicine, 11 (11): 1188–1196. DOI: 10.1038/nm1307.CrossRefGoogle Scholar
  3. Dong, B., Yu, Q. T., Dai, H. Y., Gao, Y. Y., Zhou, Z. L., Zhang, L., Jiang, H., Gao, F., Li, S. Y., Zhang, Y. H., Bian, H. J., Liu, C. X., Wang, N., Xu, H., Pan, C. M., Song, H. D., Zhang, C., and Zhang, Y., 2012. Angiotensin–converting enzyme–2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy. Journal of the American College of Cardiology, 59 (8): 739–747. DOI: 10.1016/j.jacc. 2011.09.071.CrossRefGoogle Scholar
  4. Elsabahy, M., Heo, G. S., Lim, S. M., Sun, G., and Wooley, K. L., 2015. Polymeric Nanostructures for Imaging and Therapy. Chemical Reviews, 115 (19): 10967–11011. DOI: 10.1021/acs. chemrev.5b00135.CrossRefGoogle Scholar
  5. Fang, Z. Y., Prins, J. B., and Marwick, T. H., 2004. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocrine Reviews, 25 (4): 543–567. DOI: 10.1210/er.2003–0012.CrossRefGoogle Scholar
  6. Farhangkhoee, H., Khan, Z. A., Kaur, H., Xin, X., Chen, S., and Chakrabarti, S., 2006. Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacology & Therapeutics, 111 (2): 384–399. DOI: 10.1016/j.pharmthera.2005.10.008.CrossRefGoogle Scholar
  7. Feng, S. S., Mei, L., Anitha, P., Gan, C. W., and Zhou, W., 2009. Poly(lactide)–vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials, 30 (19): 3297–3306. DOI: 10.1016/j.biomaterials. 2009.02.045.CrossRefGoogle Scholar
  8. Forbes, J. M., and Cooper, M. E., 2013. Mechanisms of diabetic complications. Physiological Reviews, 93 (1): 137–188. DOI: 10.1152/physrev.00045.2011.CrossRefGoogle Scholar
  9. Green, D., Hirsh, J., Heit, J., Prins, M., Davidson, B., and Lensing, A. W., 1994. Low molecular weight heparin: A critical analysis of clinical trials. Physiological Reviews, 46 (1): 89–109.Google Scholar
  10. Hasegawa, H., and Ichioka, S., 2015. Effects of lipo–prostaglandin E1 on wound bed microcirculation. Journal of Wound Care, 24 (7): 293–294, 296, 298–299. DOI: 10.12968/jowc.2015.24. 7.293.CrossRefGoogle Scholar
  11. Hoehn, K. L., Hohnen–Behrens, C., Cederberg, A., Wu, L. E., Turner, N., Yuasa, T., Ebina, Y., and James, D. E., 2008. IRS1–independent defects define major nodes of insulin resistance. Cell Metabolism, 7 (5): 421–433. DOI: 10.1016/j. cmet.2008.04.005.CrossRefGoogle Scholar
  12. Huynh, K., Bernardo, B. C., McMullen, J. R., and Ritchie, R. H., 2014. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacology & Therapeutics, 142 (3): 375–415. DOI: 10. 1016/j.pharmthera.2014.01.003.CrossRefGoogle Scholar
  13. Kawamura, M., Paulsen, M. J., Goldstone, A. B., Shudo, Y., and Woo, Y. J., 2017. Tissue–engineered smooth muscle cell and endothelial progenitor cell bi–level cell sheets prevent progression of cardiac dysfunction, microvascular dysfunction, and interstitial fibrosis in a rodent model of type 1 diabetes–induced cardiomyopathy. Cardiovascular Diabetology, 16 (1): 142. DOI: 10.1186/s12933–017–0625–4.CrossRefGoogle Scholar
  14. Li, P. L., Li, C. X., Xue, Y. T., Li, H. H., Liu, H. B., He, X. X., Yu, G. L., and Guan, H. S., 2013. An HPLC method for microanalysis and pharmacokinetics of marine sulfated polysaccharide PSS–loaded poly lactic–co–glycolic acid (PLGA) nanoparticles in rat plasma. Marine Drugs, 11 (4): 1113–1125. DOI: 10.3390/md11041113.CrossRefGoogle Scholar
  15. Litwin, S. E., Raya, T. E., Anderson, P. G., Daugherty, S., and Goldman, S., 1990. Abnormal cardiac function in the streptozotocin–diabetic rat. Changes in active and passive properties of the left ventricle. Journal of Clinical Investigation, 86 (2): 481–488. DOI: 10.1172/JCI114734.Google Scholar
  16. Liu, Y., Lei, S., Gao, X., Mao, X., Wang, T., Wong, G.. T., Vanhoutte, P. M., Irwin, M. G., and Xia, Z., 2012. PKCbeta inhibition with ruboxistaurin reduces oxidative stress and attenuates left ventricular hypertrophy and dysfunction in rats with streptozotocin–induced diabetes. Clinical Science, 122 (4): 161–173. DOI: 10.1042/CS20110176.CrossRefGoogle Scholar
  17. Maillet, M., van Berlo, J. H., and Molkentin, J. D., 2013. Molecular basis of physiological heart growth: Fundamental concepts and new players. Nature Reviews Molecular Cell Biology, 14 (1): 38–48. DOI: 10.1038/nrm3495.CrossRefGoogle Scholar
  18. Mizrahy, S., and Peer, D., 2012. Polysaccharides as building blocks for nanotherapeutics. Chemical Society Reviews, 41 (7): 2623–2640. DOI: 10.1039/c1cs15239d.CrossRefGoogle Scholar
  19. Saito, H., Godo, S., Sato, S., Ito, A., Ikumi, Y., Tanaka, S., Ida, T., Fujii, S., Akaike, T., and Shimokawa, H., 2018. Important role of endothelial caveolin–1 in the protective role of endothelium–dependent hyperpolarization against Nitric Oxide–mediated nitrative stress in microcirculation in mice. Journal of Cardiovascular Pharmacology, 71 (2): 113–126. DOI: 10.1097/FJC.0000000000000552.Google Scholar
  20. Sasso, F. C., Torella, D., Carbonara, O., Ellison, G. M., and Salvatore, T., 2005. Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease. Journal of the American College of Cardiology, 46 (5): 827–834. DOI: 10. 1016/j.jacc.2005.06.007.CrossRefGoogle Scholar
  21. Simons, M., Gordon, E., and Claesson–Welsh, L., 2016. Mechanisms and regulation of endothelial VEGF receptor signalling. Nature Reviews Molecular Cell Biology, 17 (10): 611–625. DOI: 10.1038/nrm.2016.87.CrossRefGoogle Scholar
  22. Stefek, M., Sotnikova, R., Okruhlicova, L., Volkovova, K., Kucharska, J., Gajdosik, A., Tribulova, N., and Gvozdjakova, A., 2000. Effect of dietary supplementation with the pyridoindole antioxidant stobadine on antioxidant state and ultrastructure of diabetic rat myocardium. Acta Diabetologica, 37 (3): 111–117.CrossRefGoogle Scholar
  23. Wang, D., Luo, P., Wang, Y., Li, W., Wang, C., Sun, D., Zhang, R., Su, T., Ma, X., Zeng, C., Wang, H., Ren, J., and Cao, F., 2013. Glucagon–like peptide–1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho–dependent mechanism. Diabetes, 62 (5): 1697–1708. DOI: 10.2337/db12–1025.CrossRefGoogle Scholar
  24. Wong, P. T., and Choi, S. K., 2015. Mechanisms of drug release in nanotherapeutic delivery systems. Chemical Reviews, 115 (9): 3388–3432. DOI: 10.3390/ijms16011772.CrossRefGoogle Scholar
  25. Wu, B., Zhang, Z., Lui, W., Chen, X., Wang, Y., Chamberlain, A. A., Moreno–Rodriguez, R. A., and Zhou, B., 2012. Endocardial cells form the coronary arteries by angiogenesis through myocardial–endocardial VEGF signaling. Cell, 151 (5): 1083–1096. DOI: 10.1016/j.cell.2012.10.023.CrossRefGoogle Scholar
  26. Wu, Y. T., Tan, H. L., Huang, Q., Ong, C. N., and Shen, H. M., 2009. Activation of the PI3K–Akt–mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy, 5 (6): 824–834.CrossRefGoogle Scholar
  27. Wu, Z., Huang, A., Yan, J., Liu, B., Liu, Q., Zhang, J., Zhang, X., Ou, C., and Chen, M., 2017. Resveratrol ameliorates cardiac dysfunction by inhibiting apoptosis via the PI3K/Akt/FoxO3a pathway in a rat model of diabetic cardiomyopathy. Journal of Cardiovascular Pharmacology, 70 (3): 184–193. DOI: 10. 1097/FJC.0000000000000504.CrossRefGoogle Scholar
  28. Xin, H., Zhong, C., Nudleman, E., and Ferrara, N., 2016. Evidence for pro–angiogenic functions of VEGF–Ax. Cell, 167 (1): 275–284. DOI: 10.1016/j.cell.2016.08.054.CrossRefGoogle Scholar
  29. Xin, M., Ren, L., Sun, Y., Li, H. H., Guan, H. S., He, X. X., and Li, C. X., 2016. Anticoagulant and antithrombotic activities of low–molecular–weight propylene glycol alginate sodium sulfate (PSS). European Journal of Medicinal Chemistry, 114: 33–40. DOI: 10.1016/j.ejmech.2016.02.063.CrossRefGoogle Scholar
  30. Yin, Y., Qi, F., Song, Z., Zhang, B., and Teng, J., 2014. Ferulic acid combined with astragaloside IV protects against vascular endothelial dysfunction in diabetic rats. Bioscience Trends, 8 (4): 217–226.CrossRefGoogle Scholar
  31. Zeng, Y., Yang, D., Qiu, P., Han, Z., Zeng, P., He, Y., Guo, Z., Xu, L., Cui, Y., Zhou, Z., Zhang, M., Hao, J., and Zhang, L., 2016. Efficacy of heparinoid pss in treating cardiovascular diseases and beyond–A review of 27 years clinical experiences in China. Clinical and Applied Thrombosis/Hemostasis, 22 (3): 222–229. DOI: 10.1177/1076029614551822.CrossRefGoogle Scholar
  32. Zhang, X., Pan, L., Yang, K., Fu, Y., Liu, Y., Chi, J., Zhang, X., Hong, S., Ma, X., and Yin, X., 2017. H3 relaxin protects against myocardial injury in experimental diabetic cardiomyopathy by inhibiting myocardial apoptosis, fibrosis and inflammation. Cellular Physiology and Biochemistry, 43 (4): 1311–1324. DOI: 10.1159/000481843.CrossRefGoogle Scholar
  33. Zhao, M. M., Li, Z., Teng, Z., Zhao, J. S., Yu, X. H., Watanabe, Y., and Zhao, L. M., 2007. Repeated oral treatment with polysaccharide sulfate reduces insulin resistance and dyslipidemia in diabetic dyslipidemic rat model. Acta Pharmaceutica Sinica, 42 (5): 488–491.Google Scholar
  34. Zoungas, S., Patel, A., Chalmers, J., de Galan, B. E., Li, Q., Billot L., Woodward, M., Ninomiya, T., Neal, and Group, A. C., 2010. Severe hypoglycemia and risks of vascular events and death. New England Journal of Medicine, 363 (15): 1410–1418. DOI: 10.1056/NEJMoa1003795.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geriatricsthe Affiliated Hospital of Qingdao UniversityQingdaoChina

Personalised recommendations