Advertisement

Journal of Ocean University of China

, Volume 18, Issue 6, pp 1371–1381 | Cite as

Anticorrosion Coatings from Poly (Aniline-co-2-Ethylaniline) Micro/Nanostructures

  • Cuijuan Xing
  • Xinling Song
  • Zhiming ZhangEmail author
  • Xiaohui Jiang
  • Liangmin YuEmail author
Article
  • 28 Downloads

Abstract

PANI copolymer micro/nanostructures with different surface wettability were obtained from the chemical oxidation copolymerization of aniline (Ani) with 2-ethyl aniline (EA) at diverse [EA]/[Ani+EA] molar ratios, by employing ammonium persulfate as an oxidant. The results revealed that the poly (aniline-co-2-ethyl aniline) (PANI-EA) copolymer micro/nanostructures exhibited satisfactory anticorrosion performance for carbon steel, and the corrosion protection efficiency increased with the increase of water repellent property. Poly (2-ethyl aniline) (PEA) showed the largest contact angle (CA=145°) and show the best corrosion protection for the carbon steel (η = 87.29%). It is found that the superior anticorrosion property of PEA is attributed to its high hydrophobicity, low conductivity and low porosity.

Key words

polyaniline poly (aniline-co-2-ethylaniline) micro/nanostructures corrosion protection wettability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors appreciate the financial supports of the National Natural Science Foundation of China (No. 41476059) and the Natural Science Foundation of Hebei Province (No. E2018108011).

References

  1. Ahmad, N., and MacDiarmid, A. G., 1996. Inhibition of corrosion of steels with the exploitation of conducting polymers. Synthetic Metals, 78 (2): 103–110.CrossRefGoogle Scholar
  2. Alvial, G., Matencio, T., Neves, B. R. A., and Silva, G. G., 2004. Blends of poly (2, 5-dimethoxy aniline) and fluoropolymers as protective coatings. Electrochimica Acta, 49: 3507–3516.CrossRefGoogle Scholar
  3. Antonio, F. F., Roderick, B. P., and Rigoberto, C. A., 2010. A conjugated polymer network approach to anticorrosion coatings: Poly(vinylcarbazole) electrodeposition. Industrial & Engineering Chemistry Research, 49: 9789–9797.CrossRefGoogle Scholar
  4. Athawale, A. A., Deore, B., Vedpathak, M., and Kulkarni, S. K., 1999. Photoemission and conductivity measurement of poly (N-methyl aniline) and poly (N-ethyl aniline) films. Journal of Applied Polymer Science, 74: 1286–1292.CrossRefGoogle Scholar
  5. Bazzaoui, M., Martins, J. I., Bazzaoui, E. A., Reis, T. C., and Martins, L., 2004. Pyrrole electropolymerization on copper and brass in a single-step process from aqueous solution. Journal of Applied Electrochemistry, 34: 815–822.CrossRefGoogle Scholar
  6. Beck, F., Barsch, U., and Michaelis, R., 1993. Corrosion of conducting polymers in aqueous media. Journal of Electroanalytical Chemistry, 351: 169–184.CrossRefGoogle Scholar
  7. Bereket, G., Hür, E., and Şahin, Y., 2005. Electrochemical synthesis and anti-corrosive properties of polyaniline, poly (2-anisidine), and poly (aniline-co-2-anisidine) films on stainless steel. Progress in Organic Coatings, 54: 63–72.CrossRefGoogle Scholar
  8. Bereket, G., Hür, E., and Şahin, Y., 2005. Electrodeposition of polyaniline, poly (2-iodoaniline), and poly (aniline-co-2-iodoaniline) on steel surfaces and corrosion protection of steel. Applied Surface Science, 252: 1233–1244.CrossRefGoogle Scholar
  9. Bernard, M. C., LeGoff, A. H., and Joiret, S., 1999. Polyaniline layer for iron protection in sulfate medium. Synthetic Metals, 102: 1383–1384.CrossRefGoogle Scholar
  10. Camalet, J. L., Lacroix, J. C., Aeiyach, S., Chane-Ching, K., and Lacaze, P. C., 1998. Electrosynthesis of adherent polyaniline films on iron and mild steel in aqueous oxalic acid medium. Synthetic Metals, 93 (2): 133–142.CrossRefGoogle Scholar
  11. Cao, Y., Smith, P., and Heeger, A. J., 1989. Spectroscopic studies of polyaniline in solution and in spin-cast films. Synthetic Metals, 32: 263–281.CrossRefGoogle Scholar
  12. Cassie, A. B. D., and Baxter, S., 1944. Wettability of porous surfaces. Transactions of the Faraday Society, 40: 546–561.CrossRefGoogle Scholar
  13. Chen, H. F., Wang, F. Q., and Han, Y. X., 2015. Gas measurement method and weighing method to measure the core porosity research and comparative analysis. Journal of Engineering, 5 (3): 20–26.Google Scholar
  14. Cui, X. K., Zhu, G. Y., Pan, Y. F., Shao, Q., Zhao, C., Dong, M. Y., Zhang, Y., and Guo, Z. H., 2018. Polydimethyl-siloxanetitania nanocomposite coating: Fabrication and corrosion resistance. Polymer, 138: 203–210.CrossRefGoogle Scholar
  15. DeBerry, D. W., 1985. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating. Journal of the Electrochemical Society, 132: 1022–1026.CrossRefGoogle Scholar
  16. de Leon, A. C., Pernites, R. B., and Advincula, R. C., 2012. Superhydrophobic colloidally textured polythiophene film as superior anticorrosion coating. ACS Applied Materials and Interfaces, 4: 3169–3176.CrossRefGoogle Scholar
  17. Fang, J. J., Xu, K., Zhu, L. H., Zhou, Z. X., and Tang, H. Q., 2007. A study on mechanism of corrosion protection of polyaniline coating and its failure. Corrosion Science, 49: 4232–4242.CrossRefGoogle Scholar
  18. Fenelon, A. M., and Carmel, B. B., 2003. The electropolymerization of pyrrole at a CuNi electrode: Corrosion protection properties. Corrosion Science, 45 (12): 2837–2850.CrossRefGoogle Scholar
  19. Hür, E., Bereket, G., and Şahin, Y., 2006. Corrosion inhibition of stainless steel by polyaniline, poly (2-chloroaniline), and poly(aniline-co-2-chloroaniline) in HCl. Progress in Organic Coatings, 57 (2): 149–158.CrossRefGoogle Scholar
  20. Kendig, M., Hon, M., and Warren, L., 2003. ‘Smart’ corrosion inhibiting coatings. Progress in Organic Coatings, 47 (3–4): 183–189.CrossRefGoogle Scholar
  21. Kilmartin, P. A., Trier, L., and Wright, G. A., 2002. Corrosion inhibition of polyaniline and poly (o-methoxyaniline) on stainless steels. Synthetic Metals, 131 (1–3): 99–109.CrossRefGoogle Scholar
  22. Kinlen, P. J., Menon, V., and Ding, Y. W., 1999. A mechanistic investigation of polyaniline corrosion protection using the scanning reference electrode technique. Journal of the Electrochemical Society, 146 (10): 3690–3695.CrossRefGoogle Scholar
  23. Kumar, A., Stephenson, L. D., and Murray, J. N., 2006. Self-healing coatings for steel. Progress in Organic Coatings, 55 (3): 244–253.CrossRefGoogle Scholar
  24. Li, P., Tan, T. C., and Lee, J. Y., 1997. Corrosion protection of mild steel by electroactive polyaniline coatings. Synthetic Metals, 88 (3): 237–242.CrossRefGoogle Scholar
  25. Lu, W. K., Elsenbaumer, R. L., and Wessling, B., 1995. Corrosion protection of mild steel by coatings containing polyaniline. Synthetic Metals, 71 (1–3): 2163–2166.CrossRefGoogle Scholar
  26. MacDiarmid, A. G., Chiang, J. C., Halpern, M., Huang, W. S., Mu, S. L., Nanaxakkara, L. D., Wu, S. W., and Yaniger, S., 1985. ‘Polyaniline’: Interconversion of metallic and insulating forms. Molecular Crystals and Liquid Crystals, 121 (1–4): 173–180.CrossRefGoogle Scholar
  27. MacDiarmid, A. G., and Epstein, A. J., 1994. The concept of secondary doping as applied to polyaniline. Synthetic Metals, 65: 103–116.CrossRefGoogle Scholar
  28. Martins, J. I., Reis, T. C., Bazzaoui, M., Bazzaoui, E. A., and Martins, L., 2004. Polypyrrole coatings as a treatment for zinc-coated steel surfaces against corrosion. Corrosion Science, 46 (10): 2361–2381.CrossRefGoogle Scholar
  29. Mattoso, L. H. C., Faria, R. M., Bulhoes, L. O. S., and Macdiarmid, A. G., 1994. Synthesis, doping, and processing of high molecular weight poly (O-methoxyaniline). Journal of Polymer Science: Part A: Polymer Chemistry, 32: 2147–2153.CrossRefGoogle Scholar
  30. Moraes, S. R., Vilca, D. H., and Motheo, A. J., 2004. Characteristics of polyaniline synthesized in phosphate buffer solution. European Polymer Journal, 40 (9): 2033–2041.CrossRefGoogle Scholar
  31. Noor, E. A., 2009. Evaluation of inhibitive action of some quaternary N-heterocyclic compounds on the corrosion of Al-Cu alloy in hydrochloric acid. Materials Chemistry and Physics, 114 (2–3): 533–541.CrossRefGoogle Scholar
  32. Peng, C. W, Chang, K. C., Weng, C. J., Lai, M. C., Hsu, C. H., Hsu, S. C., Hsu, Y. Y., Hung, W. I., Wei, Y., and Yeh, J. M., 2013. Nano-casting technique to prepare polyaniline surface with biomimetic superhydrophobic structures for anticorrosion application. Electrochimica Acta, 95: 192–199.CrossRefGoogle Scholar
  33. Pud, A. A., Shapoval, G. S., Kamarchik, P., Ogurtsov, N. A., Gromovay, V. F., Myronyuk, I. E., and Kontsur, Y. V., 1999. Electrochemical behavior of mild steel coated by polyaniline doped with organic sulfonic acids. Synthetic Metals, 107: 111–115.CrossRefGoogle Scholar
  34. Quraishi, M. A., and Rawat, J., 2002. Inhibition of mild steel corrosion by some macrocyclic compounds in hot and concentrated hydrochloric acid. Materials Chemistry and Physics, 73: 118–122.CrossRefGoogle Scholar
  35. Roković, M. K., Kvastek, K., Horvat-Radošević, V., and Duić, L. J., 2007. Poly (ortho-ethoxyaniline) in corrosion protection of stainless steel. Corrosion Science, 49 (6): 2567–2580.CrossRefGoogle Scholar
  36. Sai Ram, M., and Palaniappan, S., 2004. A process for the preparation of polyaniline salt doped with acid and surfactant groups using benzoyl peroxide. Journal of Materials Science, 39 (9): 3069–3077.CrossRefGoogle Scholar
  37. Sathiyanarayanan, S., Balakrishnan, K., Dhawan, S. K., and Trivedi, D. C., 1994. Prevention of corrosion of iron in acidic media using poly (o-methoxy-aniline). Electrochimica Acta, 39 (6): 831–837.CrossRefGoogle Scholar
  38. Sazou, D., 2001. Electrodeposition of ring-substituted polyanilines on Fe surfaces from aqueous oxalic acid solutions and corrosion protection of Fe. Synthetic Metals, 118: 133–147.CrossRefGoogle Scholar
  39. Sazou, D., and Christos, G., 1997. Formation of conducting polyaniline coatings on iron surfaces by electropolymerization of aniline in aqueous solutions. Journal of Electroanalytical Chemistry, 429: 81–93.CrossRefGoogle Scholar
  40. Shah, K., and Iroh, J., 2002. Electrochemical synthesis and corrosion behavior of poly (N-ethyl aniline) coatings on Al-2024 alloy. Synthetic Metals, 132 (1–2): 35–41.CrossRefGoogle Scholar
  41. Shen, G. X., Chen, Y. C., and Lin, C. J., 2005. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method. Thin Solid Films, 489 (1–2): 130–136.CrossRefGoogle Scholar
  42. Söylev, T. A., and Richardson, M. G., 2008. Corrosion inhibitors for steel in concrete: State-of-the-art report. Construction and Building Materials, 22 (4): 609–622.CrossRefGoogle Scholar
  43. Suryanarayana, C., Rao, K. C., and Kumar, D., 2008. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Progress in Organic Coatings, 63 (1): 72–78.CrossRefGoogle Scholar
  44. Tale, A., Passiniemi, P., Forsen, O., and Ylaaari, S., 1997. Polyaniline/epoxy coatings with good anti-corrosion properties. Synthetic Metals, 85: 1333–1334.CrossRefGoogle Scholar
  45. Tallman, D. E., Spinks, G., Dominis, A., and Wallace, G. G., 2002. Electroactive conducting polymers for corrosion control. Journal of Solid State Electrochemistry, 6 (2): 73–84.CrossRefGoogle Scholar
  46. Tang, J. S., Jing, X. B., Wang, B. C., and Wang, F. S., 1988. Infrared spectra of soluble polyaniline. Synthetic Metals, 24: 231–238.CrossRefGoogle Scholar
  47. Shinde, V., Sainkar, S. R., and Patil, P. P., 2005. Corrosion protective poly (o-toluidine) coatings on copper. Corrosion Science, 47 (6): 1352–1369.CrossRefGoogle Scholar
  48. Wang, T., and Tan, Y. J., 2006. Understanding electrodeposition of polyaniline coatings for corrosion prevention applications using the wire beam electrode method. Corrosion Science, 48 (8): 2274–2290.CrossRefGoogle Scholar
  49. Weng, C. J., Chang, C. H., Peng, C. W., Chen, S. W., Yeh, J. M., Hsu, C. L., and Wei, Y., 2011. Advanced anticorrosive coatings prepared from the mimicked xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability. Chemistry of Materials, 23 (8): 2075–2083.CrossRefGoogle Scholar
  50. Wessling, B., 1994. Passivation of metals by coating with polyaniline: Corrosion potential shift and morphological changes. Advanced Materials, 6 (3): 226–228.CrossRefGoogle Scholar
  51. Wessling, B., and Joerg, P., 1999. Corrosion prevention with an organic metal (polyaniline): Corrosion test results. Electrochimica Acta, 44 (12): 2139–2147.CrossRefGoogle Scholar
  52. Xing, C. J., Zhang, Z. M., Yu, L. M., Zhang, L. J., and Bowmaker, G. A., 2014. Electrochemical corrosion behavior of carbon steel coated by polyaniline copolymers micro/nanostructures. RSC Advances, 4 (62): 32718–32725.CrossRefGoogle Scholar
  53. Yağan, A., Pekmez, N. Ö., and Yildiz, A., 2005. Electropolymerization of poly (N-methylaniline) on mild steel: Synthesis, characterization and corrosion protection. Journal of Electroanalytical Chemistry, 578 (2): 231–238.CrossRefGoogle Scholar
  54. Yağan, A., Pekmez, N. Ö., and Yildiz, A., 2007. Investigation of protective effect of poly (N-ethylaniline) coatings on iron in various corrosive solutions. Surface and Coatings Technology, 201 (16–17): 7339–7345.CrossRefGoogle Scholar
  55. Yağan, A., Pekmez, N. Ö., and Yildiz, A., 2006. Corrosion inhibition by poly (N-ethylaniline) coatings of mild steel in aqueous acidic solutions. Progress in Organic Coatings, 57 (4): 314–318.CrossRefGoogle Scholar
  56. Yang, X. G., Li, B., Wang, H. Z., and Hou, B. R., 2010. Anticorrosion performance of polyaniline nanostructures on mild steel. Progress in Organic Coatings, 69 (3): 267–271.CrossRefGoogle Scholar
  57. Yu, D. Y., and Tian, J. T., 2014. Superhydrophobicity: Is it really better than hydrophobicity on anti-corrosion? Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445: 75–78.CrossRefGoogle Scholar
  58. Yun, H., Li, J., Chen, H. B., and Lin, C. J., 2007. A study on the N-, S- and Cl-modified nano-TiO2 coatings for corrosion protection of stainless steel. Electrochimica Acta, 52 (24): 6679–6685.CrossRefGoogle Scholar
  59. Zalewska, T., Lisowska-Oleksiak, A., Biallozor, S., and Jasulaitiene, V., 2000. Polypyrrole films polymerised on a nickel substrate. Electrochimica Acta, 45: 4031–4040.CrossRefGoogle Scholar
  60. Zhang, F., Chen, S. G., Dong, L. H., Lei, Y. H., Liu, T., and Yin, Y. S., 2011. Preparation of superhydrophobic films on titanium as effective corrosion barriers. Applied Surface Science, 257 (7): 2587–2591.CrossRefGoogle Scholar
  61. Zhang, Y. X., Zhao, M., Zhang, J. X., Shao, Q., Li, J. F., Li, H., Lin, B., Yu, M. Y., Chen, S. G., and Guo, Z. H., 2018. Excellent corrosion protection performance of epoxy composite coatings filled with silane functionalized silicon nitride. Journal of Polymer Research, 25 (5): 130–142.CrossRefGoogle Scholar
  62. Zhang, Z. M., and Wan, M. X., 2002. Composite films of nanostructured polyaniline with poly (vinyl alcohol). Synthetic Metals, 128: 83–89.CrossRefGoogle Scholar
  63. Zhu, Y., Ren, G. Q., Wan, M. X., and Jiang, L., 2009. 3D hollow microspheres assembled from 1D polyaniline nanowires through a cooperation reaction. Macromolecular Chemistry and Physics, 210 (23): 2046–2051.CrossRefGoogle Scholar
  64. Zhu, Y., Zhang, J., Zheng, Y., Huang, Z., Feng, L., and Jiang, L., 2006. Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments. Advanced Functional Materials, 16 (4): 568–574.CrossRefGoogle Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  1. 1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of ChinaQingdaoChina
  2. 2.College of Chemical Engineering and Biological TechnologyXingtai UniversityXingtaiChina
  3. 3.Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina

Personalised recommendations