Advertisement

Journal of Ocean University of China

, Volume 18, Issue 6, pp 1302–1316 | Cite as

Stratigraphic Sequence and Sedimentary Systems in the Middle-Southern Continental Slope of the East China Sea from Seismic Reflection Data: Exploration Prospects of Gas Hydrate

  • Deyong LiEmail author
  • Hongyan Chen
  • Shujuan Xu
  • Junhui Xing
  • Honggang Cheng
  • Jinkai Wang
Article
  • 23 Downloads

Abstract

Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea, such as bottom simulating reflections (BSRs), undersea gas springs, pyrite associated with methane leakage, mud diapirs/mud volcanos, bottom-water methane anomalies and so on. In this study, six key stratigraphic interfaces including T0 (seafloor), T1 (LGM, 23 kyr B.P.), T2 (2.58 Myr), T3 (5.33 Myr), T4 (11.02 Myr) and T5 (16.12 Myr) were identified, and then five third-order sequences of SQIII1 to SQIII5 were divided. However, T5 in southern continental slope is not found, which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene, earlier than the southern segment. Four system tracts including lowstand systems tract (LST), transgressive systems tract (TST), highstand systems tract (HST) and falling stage systems tract (FSST) are further divided. The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P. indicate two large-scale sea level drop events in the research area. Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas, littoral fluvial-delta plains, incised channels or submarine canyons, slope fans, submarine fans or coastal sandbars, littoral-neritic finegrained sediments, mud volcanos and some other geological bodies respectively. The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m, and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m. The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections. The re-depositional turbidite sand bodies, such as canyon channels, slope fans and submarine fans developed in Quaternary strata, are the predominant hydrate reservoirs. According to developing process, the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage, sediments destabilizing and methane leakage stage, and channel filling and hydrate re-occurrence stage.

Key words

sequence stratigraphic architecture systems tract seismic facies depositional system submarine canyon gas hydrate stability zone hydrate dynamic accumulation continental slope of the East China Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 41806073, 41530963), the Natural Science Foundation of Shandong Province (No. ZR 2017BD014), the Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology (No. DMSM 2017042), and the Fundamental Research Funds for the Central Universities (Nos. 201964016, 201851023). We would like to thank Prof. S. Z. Li for their scientific guidance and help. We also thank two reviewers for their recommendations.

References

  1. Bangs, N. L., Hornbach, M. J., Moore, G. F., and Park, J. D., 2010. Massive methane release triggered by seafloor erosion offshore southwest Japan. Geology, 38: 1019–1022.Google Scholar
  2. Catuneanu, O., 2002. Sequence stragraphy of clastic systems: Concepts merits, and pitfalls. Journal of African Earth Sciences, 35: 1–43.Google Scholar
  3. Chen, J. W., 2014. Formation conditions and resources potential of gas hydrate in the Okinawa Trough of the East China Sea. Acta Geoscientica Sinica, 35(6): 726–732.Google Scholar
  4. Collett, T. S., 2002. Energy resource potential of natural gas hydrates. AAPG Bulletin, 86: 1971–1992.Google Scholar
  5. Davies, R. J., Thatcher, K. E., Mathias, S. A., and Yang, J., 2011. Deepwater canyons: An escape route for methane sealed by methane hydrate. Earth and Planetary Science Letters, 323–324: 72–78.Google Scholar
  6. Dickens, G. R., O’Neil, J. R., Rea, D. K., and Qwen, R. M., 1995. Dissociation of the oceanic methane hydrate as a case of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10: 965–971.Google Scholar
  7. Fan, D. J., and Yang, Z. S., 2004. Development and distribution of natural gas hydrate in the Okinawa Trough. Acta Petrolei Sinica, 25(3): 11–18 (in Chinese with English abstract).Google Scholar
  8. Fang, Y. X., Gao, J. Y., Li, M. B., and Tang, Y., 2005. Relation between gas hydrate and geologic structures in the Okinawa Trough. Marine Geology and Quaternary Geology, 25(1): 85–91.Google Scholar
  9. Guo, J. H., Wu, S. G., Xu, N., and Fan, F. X., 2007. Structure characteristics of gas hydrate deposition in the west slope of the Okinawa Trough and its adjacent area. Oceanologia et Limnologia Sinica, 38(5): 432–437.Google Scholar
  10. Guo, L. Z., Shi, Y. S., and Ma, R. S., 1983. On the formation and evolution of the Mesozoic-Cenozoic active continental margin and island arc tectonics of the Western Pacific Ocean. Acta Geologica Sinica, 57: 11–22.Google Scholar
  11. Hall, R., 2012. Late Jurassic-Cenozoic reconstructions of Indonesian region and the Indian Ocean. Tectonophysics, 570–571: 1–41.Google Scholar
  12. Hao, T. Y., Liu, J. H., Guo, F., Huang, Z. X., Xu, Y., Dai, M. G., Li, A. C., and Fu, Y. T., 2004. Research on crustal structure and lithosphere property in the Okinawa Trough area. Chinese Journal of Geophysics, 47(3): 462–468.Google Scholar
  13. Haq, B. U., Hardenbol, J., and Vail, P. R., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156–1166.Google Scholar
  14. Hernández-Molina, F. J., Soto, M., Piola, A. R., Tomasini, J., Preu, B., Thompson, P., Badalini, G., Creaser, A., Violante, R. A., Morales, E., Paterlini, M., and Ana, H. D. S., 2016. A contourite depositional system along the Uruguayan continentalmargin: Sedimentary, oceanographic and paleoceanographic implications. Marine Geology, 378: 333–349.Google Scholar
  15. Hunt, D., and Tucker, M. E., 1995. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level fall-reply. Sedimentary Geology, 95: 147–160.Google Scholar
  16. Komatsu, Y. H., Suzuki, K., and Fujii, T., 2015. Sedimentary facies and paleoenvironments of a gas-hydrate-bearing sediment core in the eastern Nankai Trough, Japan. Marine and Petroleum Geology, 66: 358–367.Google Scholar
  17. Kopper, A. A. P., and Staudigel, H., 2005. Asynchronous bends in Pacific seamount trails: A case for extensional volcanism. Science, 307: 904–907.Google Scholar
  18. Kumar, P., Collett, T. S., Boswell, R., Cochran, J. R., Lall, M., Mazumdar, A., Ramana, M. V., Ramprasad, T., Riedel, M., Sain, K., Sathe, A. V., Vishwanath, K., Yadav, U. S., and NGHP Expedition 01 Scientific Party, 2014. Geologic implications of gas hydrates in the offshore of India: KrishnaeGodavari Basin, Mahanadi Basin, Andaman Sea, KeralaeKonkan Basin. Marine and Petroleum Geology, 58: 29–98.Google Scholar
  19. Lambeck, K., and Chappell, J., 2001. Sea level change through the last glacial cycle. Science, 292: 679–686.Google Scholar
  20. Letouzey, J., and Kimura, M., 1985. Okinawa Trough genesis: Structure and evolution of a back-arc basin developed in a continent. Marine and Petroleum Geology, 2: 111–130.Google Scholar
  21. Li, D. Y., Dong, B. J., Jiang, X. D., and Xing, J. H., 2016a. Geochemical evidence for provenance and tectonic background from the Palaeogene sedimentary rocks of the East China Sea Shelf Basin. Geological Journal, 51(S1): 209–228.Google Scholar
  22. Li, D. Y., Jiang, X. D., Xu, F., Liu, J. S., and Hou, G. W., 2016b. Geochemistry of the Paleocene clastic rocks in Lishui Sag, East China Sea Shelf Basin: Implications for tectonic background and provenance. Acta Geologica Sinica, 90: 166–181.Google Scholar
  23. Li, G. X., Li, P., Liu, Y., Qiao, L. L., Ma, Y. Y., Xu, J. S., and Yang, Z. G., 2014. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum. Earth-Science Reviews, 139: 390–405.Google Scholar
  24. Li, J. B., 2008. Regional Geology of the East China Sea. Ocean Press, Beijing, 335–339.Google Scholar
  25. Li, J. Z., Liu, S. S., Zhang, J. L., Fan, Z. L., Sun, Z. Q., Zhang, M., Yuan, Y., and Zhang, P. H., 2015a. Architecture and facies model in a non-marine to shallow-marine setting with continuous base-level rise: An example from the Cretaceous Denglouku Formation in the Changling Depression, Songliao Basin, China. Marine and Petroleum Geology, 68: 381–393.Google Scholar
  26. Li, P. Y., Wang, Y. J., and Liu, Z. X., 1999. The chronostratigraphy and deposition rate of the Okinawa Trough. Science in China: Series D, 29(1): 50–55.Google Scholar
  27. Li, Q., Cai, F., Liang, J., Shao, H. B., Dong, G., Wang, F., Yang, C. S., and Hu, G. W., 2015b. Geochemical constraints on the methane seep activity in western slope of the middle Okinawa Trough, the East China Sea. Science China: Earth Science, 45: 676–687.Google Scholar
  28. Li, S. Z., Li, G. X., Liu, X., and Somerville, I., 2016c. Preface: Earth system evolution of the Pacific and Indian Oceans and the South China Sea. Geological Journal, 51(S1): 5–11.Google Scholar
  29. Li, S. Z., Santosh, M., and Jahn, B. M., 2012a. Evolution of Asian continent and its continental margins. Journal of Asian Earth Sciences, 47: 1–4.Google Scholar
  30. Li, S. Z., Santosh, M., Zhao, G. C., Zhang, G. W., and Jin, C., 2012b. Intracontinental deformation in a frontier of superconvergence: A perspective on the tectonic milieu of the South China Block. Journal of Asian Earth Sciences, 49: 311–327.Google Scholar
  31. Li, S. Z., Yu, S., Zhao, S. J., Liu, X., Gong, S. Y., Suo, Y. H., Dai, L. M., Ma, Y., Xu, L. Q., Cao, X. Z., Wang, P. C., Sun, W. J., Yang, C., and Zhu, J. J., 2013. Tectonic transition and plate reconstructions of the East Asian continental margin. Marine Geology and Quaternary Geology, 33: 65–94.Google Scholar
  32. Li, W. R., Yang, Z. S., Wang, Q., Cao, L. H., Wang, Y. J., and Wang, X. L., 2001. Terrigenous transportation through canyon and sedimentation of submarine fan in the Okinawa Trough. Oceanologia et Limologia Sinica, 32(4): 371–380.Google Scholar
  33. Li, W. X., and Zhou, X. M., 1999. Late Mesozoic subduction zone of southeastern China. Geological Journal of China Universities, 5: 164–169.Google Scholar
  34. Li, X. S., Liu, B. H., Wu, J. L., Zhao, Y. X., and Wang, K. Y., 2004. Seismic reflection facies and deposit systems in the west slope of the Okinawa Trough. Oceanologia et Limnologia Sinica, 35(2): 120–128.Google Scholar
  35. Li, Z. X., and Li, X. H., 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179–182.Google Scholar
  36. Liang, R. C., Wu, J. L., Liu, B. H., and Wang, Y., 2001. Linear magnetic anomalies and tectonic development for the middle Okinawa Trough. Acta Oceanologica Sinica, 23(2): 69–78.Google Scholar
  37. Liu, B. H., Li, X. S., Zhao, Y. X., Zheng, Y. P., and Wu, J. L., 2005. Debris transport on the western continental slope of the Okinawa Trough: Slumping and gravity flowing. Oceanologia et Limnologia Sinica, 36(1): 1–9.Google Scholar
  38. Liu, L., Zhang, J. L., Wang, R., Wang, J., and Yu, J., 2016. Facies architectural analysis and three-dimensional modeling of Wen79 fault block, Wenliu oilfield, Dongpu Depression, China. Arabian Journal of Geosciences, 9(18): 714.Google Scholar
  39. Liu, M., Cui, X. J., and Liu, F. T., 2004. Cenozoic rifting and volcanism in Eastern China: A mantle dynamic link to the Indo-Asian collision? Tectonophysics, 393: 29–42.Google Scholar
  40. Liu, Z. C., Chen, Y. L., Ding, J. S., Zhang, W. H., Wu, Y. T., and Guo, F. B., 2003. Study on zoned characteristics and formation cause of the East China Sea submarine topography. Advances in Marine Science, 21(2): 160–173.Google Scholar
  41. Lowe, D. R., 1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Research, 52: 279–297.Google Scholar
  42. Lu, X., Song, J. M., Yuan, H. M., and Li, N., 2015. Carbon distribution and exchange of Kuroshio and adjacent China Sea Shelf: A review. Advances in Earth Science, 30(2): 214–225.Google Scholar
  43. Lu, Z. Q., Wu, N. Y., Chen, J. W., Gong, J. M., and Wu, B. H., 2008. Preliminary discussion on gas hydrate geological system. Geoscience, 22(3): 363–375.Google Scholar
  44. Luan, X. W., Lu, Y. T., Zhao, K. B., Sun, D. S., and Li, J., 2008. Geological factors for the development and newly advances in exploration of gas hydrate in East China Sea Slope and Okinawa Trough. Geoscience, 22(3): 342–355.Google Scholar
  45. Luan, X. W., Qin, Y. S., Zhang, X. H., and Gong, J. M., 2003. The stability zone of gas hydrate in the slope of East China Sea and neighboring Trough Basin area. Chinese Journal of Geophysics, 46(4): 467–475.Google Scholar
  46. Luan, X. W., and Qin, Y. S., 2005. The discovery of the gas spring at the western bottom of the Okinawa Trough. Chinese Science Bulletin, 50(8): 802–810.Google Scholar
  47. Lv, D. W., and Chen, J. T., 2014. Depositional environments and sequence stratigraphy of the late Carboniferous — early Permian coal-bearing successions (Shandong Province, China): Sequence development in an epicontinental basin. Journal of Asian Earth Science, 79: 16–30.Google Scholar
  48. Marinakis, D., Varotsis, N., and Perissoratis, C., 2015. Gas hydrate dissociation affecting the permeability and consolidation behaviour of deep sea host sediment. Journal of Natural Gas Science and Engineering, 23: 55–62.Google Scholar
  49. Maslin, M., Owen, M., Day, S., and Long, D., 2004. Linking continental-slope failures and climate change: Testing the clathrate gun hypothesis. Geology, 32: 53–56.Google Scholar
  50. Meng, X. W., Liu, B. H., Shi, X. F., and Wu, J. L., 2000. Possibility of gas hydrate occurring in the western lower slope of mid-Okinawa Trough. Acta Sedimentologica Sinica, 18(4): 629–632 (in Chinese with English abstract).Google Scholar
  51. Miles, P. R., 1995. Potential distribution of methane hydrate beneath the European continental margin. Geophysical Research Letters, 22: 3179–3182.Google Scholar
  52. Mix, A. C., Bard, E., and Schneider, R., 2001. Environmental processes of the ice age: Land, oceans, glaciers (EPILOG). Quaternary Science Reviews, 20: 627–657.Google Scholar
  53. Noguchi, S., Shimoda, N., Takano, O., Oikawa, N., and Inamori, T., 2011. 3-D internal architecture of methane hydrate-bearing turbidite channels in the Eastern Nankai Trough, Japan. Marine and Petroleum Geology, 28: 1817–1828.Google Scholar
  54. Qin, Y. S., Zhao, Y. Y., Chen, L. R., and Zhao, S. L., 1987. Geology of the East China Sea. Science Press, Beijing, 210–261.Google Scholar
  55. Reading, H. G., and Richards, M., 1994. Turbidite systems in deep-water basin margins classified by grain size and feeder system. AAPG Bulletin, 78: 792–822.Google Scholar
  56. Schneider, J., Flemings, P. B., Day-Stirrat, R. J., and Germaine, J. T., 2011. Insights into pore-scale controls on mudstone permeability through resedimentation experiments. Geology, 39: 1011–1014.Google Scholar
  57. Sengor, A. M. C., and Batallin, B. A., 1996. Paleotectonics of Asia: Fragments of a synthesis. In: The Tectonic Evolution of Asia. Yin, A., and Harrison, M., eds., Cambridge University Press, Cambridge, 486–640.Google Scholar
  58. Song, H. B., 2003a. Researches on dynamic evolution of gas hydrate system (I): Its development in geological history. Progress in Geophysics, 18(2): 188–196.Google Scholar
  59. Song, H. B., 2003b. Researches on dynamic evolution of gas hydrate system (II): Submarine slides. Progress in Geophysics, 18(3): 503–511.Google Scholar
  60. Su, M., Sha, Z. B., Kuang, Z. G., Qiao, S. H., Liang, J. Q., Yang, R., Wu, N. Y., and Cong, X. R., 2015. Erosion and sedimentation of the submarine canyons and the relationship with gas hydrate accumulation. Geoscience, 29(1): 155–162.Google Scholar
  61. Su, M., Yang, R., Wu, N. Y., Wang, H. B., Liang, J. Q., Sha, Z. B., Cong, X. R., and Qiao, S. H., 2014. Structural characteristics in the Shenhu area, northern continental slope of South China Sea, and their influences on gas hydrate. Acta Geologica Sinica, 88(3): 318–326.Google Scholar
  62. Wang, K. D., Wang, J. P., Xu, G. Q., Zhong, S. L., Zhang, Y. Y., and Yang, H. R., 2000. The discovery and division of Mesozoic strata in the southwest of Donghai Shelg Basin. Journal of Stratigraphy, 24: 129–131.Google Scholar
  63. Wang, M., Cai, F., Li, Q., Liang, J., Yan, G. J., Dong, G., Wang, F., Shao, H. B., and Hu, G. W., 2015. Characteristics of authigenic pyrite and its sulfur isotopes influenced by methane seep at Core A, Site 79 of the middle Okinawa Trough. Science China: Earth Sciences, 45: 1819–1828.Google Scholar
  64. Wu, F. D., Li, S. T., Lu, Y. C., Li, P. L., Zhou, P., and Zhao, J. H., 1998. The Tertiary sea-level changes in the East China Sea Shelf Basin. Scientia Geologica Sinica, 33(2): 214–221.Google Scholar
  65. Wu, N. Y., Zhang, H. Q., Yang, S. X., Liang, J. Q., and Wang, H. B., 2007. Preliminary discussion on natural gas hydrate (NGH) reservoir system of Shenhu area, north slope of South China Sea. Natural Gas Industry, 27(9): 1–6 (in Chinese with English abstract).Google Scholar
  66. Wu, N. Y., Yang, S. X., Wang, H. B., Liang, J. Q., Gong, Y. H., Lu, Z. Q., Wu, D. D., and Guan, H. X., 2009. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu area, northern South China Sea. Chinese Journal of Geophysics, 52(6): 1641–1650.Google Scholar
  67. Wu, S. G., and Qin, Y. S., 2009. The research of deepwater depositional system in the northern South China Sea. Acta Sedimentologica Sinica, 27(5): 922–930 (in Chinese with English abstract).Google Scholar
  68. Wu, S. G., Qin, Z. L., Wang, D. W., Peng, X. C., Wang, Z. J., and Yao, G. S., 2011. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea. Chinese Journal of Geophysics, 54(12): 3184–3195.Google Scholar
  69. Wu, Z. Y., Li, J. B., Jin, X. L., Shang, J. H., Li, S. J., and Jin, X. B., 2014. Distribution, features, and influence factors of the submarine topographic boundaries of the Okinawa Trough. Science China: Earth Sciences, 57: 1885–1896.Google Scholar
  70. Wu, Z. Y., Wang, X. B., Jin, X. L., Li, J. B., and Gao, J. Y., 2004. The evidences of the backarc spreading and discussion on the key issues in the Okinawa Trough. Marine Geology and Quaternary Geology, 24(3): 67–76 (in Chinese with English abstract).Google Scholar
  71. Xu, H., Cai, Y., Sun, H. Q., Yan, G. J., Wei, K., Zhao, X. W., Zhu, Y. R., Shi, J., Dong, G., and Li, Q., 2012. The survey status and geological conditions of accumulation of gas hydate resource in the East China Sea. Journal of Tropical Oceanography, 32(4): 22–29 (in Chinese with English abstract).Google Scholar
  72. Xu, J. Y., and Zhang, L. Y., 2000a. Genesis of Cenozoic basins in northwest Pacific Ocean margin (I): Comments on basin-forming mechanism. Oil and Gas Geology, 21: 93–100 (in Chinese with English abstract).Google Scholar
  73. Xu, J. Y., and Zhang, L.Y., 2000b. Genesis of Cenozoic basins in northwest Pacific Ocean margin (II): Linked dextral pullapart basin system. Oil and Gas Geology, 21: 185–192 (in Chinese with English abstract).Google Scholar
  74. Xu, J. Y., and Zhang, L. Y., 2000c. Genesis of Cenozoic basins in northwest Pacific Ocean margin (III): Tectonic evolution of post rifting period. Oil and Gas Geology, 21: 287–293.Google Scholar
  75. Xu, N., Wu, S. G., Shi, B. Q., Lu, B., Xue, L. Q., Wang, X. J., and Jia, Y., 2009. Gas hydrate associated with mud diapirs in southern Okinawa Trough. Marine and Petroleum Geology, 26: 1413–1418.Google Scholar
  76. Yang, R. C., and Van Loon, A. J., 2016. Early Cretaceous slumps and turbidites with peculiar soft-sediment deformation structures on Lingshan Island (Qingdao, China) indicating a tensional tectonic regime. Journal of Asian Earth Sciences, 129: 206–219.Google Scholar
  77. Yang, R. C., Fan, A. P., Han, Z. Z., and Van Loon, A. J., 2017a. Lithofacies and origin of the late Triassic muddy gravity-flow deposits in the Ordos Basin, central China. Marine and Petroleum Geology, 85: 194–219.Google Scholar
  78. Yang, R. C., Fan, A. P., Han, Z. Z., and Van Loon, A. J., 2017b. A marine or continental nature of the deltas in the early Cretaceous Lingshandao formation — Evidences from trace elements. Acta Geologica Sinica, 91(2): 367–368.Google Scholar
  79. Yang, W. D., Zeng, J. L., and Wang, Z. Y., 2004. Prospect of gas hydrate resources in the continental slope of the East China Sea. Offshore Oil, 24: 1–8 (in Chinese with English abstract).Google Scholar
  80. Yao, B. C., Yang, M. Z., Wu, S. G., and Wang, H. B., 2008. The gas hydrate resources in the China Seas. Geoscience, 22(3): 333–341.Google Scholar
  81. Yin, P., Bemé, S., Vagner, P., and Liu, Z., 2003. Mud volcanoes at the shelf margin of the East China Sea. Marine Geology, 194: 135–149.Google Scholar
  82. Yu, H. S., and Chow, J., 1997. Cenozoic basins in northern Taiwan and tectonic implications for the development of the eastern Asian continental margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 131: 133–144.Google Scholar
  83. Zhang, G. X., Liang, J. Q., Lu, J. A., Yang, S. X., Zhang, M., Su, X., Xu, H. N., Fu, S. Y., and Kuang, Z. G., 2014. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea. Natural Gas Industry, 34(11): 1–10 (in Chinese with English abstract).Google Scholar
  84. Zhang, X. H., and Shang, L. N., 2014. Study on crustal and nature of the Okinawa Trough. Periodical of Ocean University of China, 44(6): 72–80 (in Chinese with English abstract).Google Scholar
  85. Zhao, H. Q., Wu, S. G., Xu, N., Wang, X. J., and Zhang, G. X., 2006. The elementary research of gas hydrate associated with mud diaper structure in the East China Sea. Geoscience, 20(1): 115–123.Google Scholar
  86. Zhu, Y. H., Zhang, Y. Q., Wen, H. J., Lu, Z. Q., Jia, Z. Y., Li, Y. H., Li, Q. H., Liu, C. L., Wang, P. K., and Guo, X. W., 2009. Gas hydrate in the Qilian Mountain permafrost, Qinghai, northwest China. Acta Geologica Sinica, 83(11): 1762–1771.Google Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Deyong Li
    • 1
    • 2
    • 3
    Email author
  • Hongyan Chen
    • 1
  • Shujuan Xu
    • 4
  • Junhui Xing
    • 1
    • 3
  • Honggang Cheng
    • 4
  • Jinkai Wang
    • 5
  1. 1.Key Laboratory of Submarine Geosciences and Prospecting Techniques, MOE, College of Marine GeosciencesOcean University of ChinaQingdaoChina
  2. 2.Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary MineralsShandong University of Science and TechnologyQingdaoChina
  3. 3.Evaluation and Detection Technology Laboratory for Marine Mineral ResourcesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.Research Institute of Petroleum Exploration & DevelopmentLangfangChina
  5. 5.College of Earth Science and EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations