Advertisement

Journal of Ocean University of China

, Volume 18, Issue 1, pp 80–92 | Cite as

Evaluation of Wind Retrieval from Co-Polarization Gaofen-3 SAR Imagery Around China Seas

  • Weizeng Shao
  • Shuai Zhu
  • Jian SunEmail author
  • Xinzhe Yuan
  • Yexin Sheng
  • Qingjun Zhang
  • Qiyan Ji
Article
  • 21 Downloads

Abstract

Gaofen-3 (GF-3) is the first Chinese space-borne satellite to carry the C-band multi-polarization synthetic aperture radar (SAR). Marine applications, i.e., winds and waves retrieved from GF-3 SAR images, have been operational since January 2017. In this study, we have collected more than 1000 quad-polarization (vertical-vertical (VV); horizontal-horizontal (HH); vertical- horizontal (VH); horizontal-vertical (HV)) GF-3 SAR images, which were acquired around the China Seas from September 2016 to September 2017. Wind streaks were visible in these images in co-polarization (VV and HH) channel. Geophysical model functions (GMFs), including the CMOD5N together with polarization ratio (PR) model and C-SARMOD, were used to retrieve winds from the collected co-polarization GF-3 SAR images. Wind directions were directly obtained from GF-3 SAR images. Then, the SAR-derived wind speeds were compared with the measurements at a 0.25° grid from the Advanced Scatterometer on board the Metop-A/B and microwave radiometer WindSAT. Based on the analysis, empirical corrections are proposed to improve the performance of the two GMFs. Results of this study show that the standard deviation of wind speed is 1.63 m s−1 with a 0.19 m s−1 bias and 1.71 m s−1 with a 0.26 m s−1 bias for VV- and HH-polarization GF-3 SAR, respectively. Our work not only systematically evaluates wind retrieval by using the two advanced GMFs and PR models but also proposes empirical corrections to improve the accuracy of wind retrievals from GF-3 SAR images around the China Seas and thus enhance the accuracy of near real-time operational SAR-derived wind products.

Key words

Gaofen-3 synthetic aperture radar wind China Seas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

GF-3 SAR images are accessed via http://dds.nsoas.org.cn as authorized account issued by NSOAS. WindSATwinds at a 0.25° grid are kindly provided by the Remote Sensing System (RSS) team, which authorizes an account issued for downloading the data via the sever: ftp.remss. com. ASCAT winds at a 0.25° grid are downloaded online via http://archive.eumetsat.int through an authorized account. The research is partly supported by the National Key Research and Development Program of China (Nos. 2016YFC1401605, 2016YFC1401905, and 2017YFA0604 901), the National Natural Science Foundation of China (Nos. 41806005 and 41806004), and the National Social Science Foundation of China (No. 15ZDB170).

References

  1. Alpers, W., and Brummer, B., 1994. Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS–1 satellite. Journal of Geophysical Research, 99 (C6): 12613–12621.CrossRefGoogle Scholar
  2. Bergeron, T., Bernier, M., Chokmani, K., and Lessard–Fontaine, A., 2011. Wind speed estimation using polarimetric RADARSAT–2 images: Finding the best polarization and polarization ratio. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4 (4): 896–904.CrossRefGoogle Scholar
  3. Chapron, B., Johnsen, H., and Garello, R., 2001. Wave and wind retrieval from SAR images of the ocean. Annales Des Télécommunications, 56 (11): 682–699.Google Scholar
  4. Gerling, T., 1986. Structure of the surface wind field from the Seasat SAR. Journal of Geophysical Research, 91 (C2): 2308–2320.CrossRefGoogle Scholar
  5. Hersbach, H., 2010. Comparison of C–Band scatterometer CMOD5.N equivalent neutral winds with ECMWF. Journal of Atmospheric and Oceanic Technology, 27 (4): 721–736.CrossRefGoogle Scholar
  6. Hersbach, H., Stoffelen, A., and Haan, S. D., 2007. An improved C–band scatterometer ocean geophysical model function: CMOD5. Journal of Geophysical Research, 112: C03006.CrossRefGoogle Scholar
  7. Horstmann, J., Koch, W., Lehner, S., and Tonboe, R., 2000. Wind retrieval over the ocean using synthetic aperture radar with C–band HH polarization. IEEE Transactions on Geoscience and Remote Sensing, 38 (5): 306–313.CrossRefGoogle Scholar
  8. Horstmann, J., Thompson, D. R., Monaldo, F., Iris, S., and Graber, H. C., 2005. Can synthetic aperture radars be used to estimate hurricane force winds? Geophysical Research Letters, 32 (22): 1–5.CrossRefGoogle Scholar
  9. Hwang, P., Zhang, B., and Perrie, W., 2010a. Depolarized radar return for breaking wave measurement and hurricane wind retrieval. Geophysical Research Letters, 37 (1): 70–75.CrossRefGoogle Scholar
  10. Hwang, P., Zhang, B., Toporkov, J., and Perrie, W., 2010b. Comparison of composite Bragg theory and quad–polarization radar backscatter from Radarsat–2. With applications to wave breaking and high wind retrieval. Journal of Geophysical Research, 115 (C11): 246–255.Google Scholar
  11. Kudryavtsev, V., Hauser, D., Caudal, G., and Chapron, B., 2003. A semi–empirical model of the normalized radar cross–section of the sea surface 1. Background model. Journal of Geophysical Research, 108 (C3): FET 2–1–FET 2–24.Google Scholar
  12. La, T. V., Khenchaf, A., Comblet, F., and Nahum, C., 2017. Exploitation of C–band Sentinel–1 images for high–resolution wind field retrieval in coastal zones (Iroise Coast, France). IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (12): 5458–5471.CrossRefGoogle Scholar
  13. Lehner, S., and Horstmann, J., 1998. Mesoscale wind measurements using recalibrated ERS SAR images. Journal of Geophysical Research, 103 (C4): 7847–7856.CrossRefGoogle Scholar
  14. Lehner, S., Schulz–Stellenfleth, J., Schattler, B., Breit, H., and Horstmann, J., 2000. Wind and wave measurements using complex ERS–2 SAR wave mode data. IEEE Transactions on Geoscience and Remote Sensing, 38 (5): 2246–2257.CrossRefGoogle Scholar
  15. Li, X. F., 2015. The first Sentinel–1 SAR image of a typhoon. Acta Oceanologica Sinica, 34 (1): 1–2.CrossRefGoogle Scholar
  16. Lin, B., Shao, W. Z., Li, X. F., Li, H., Du, X. Q., Ji, Q. Y., and Cai, L. N., 2017. Development and validation of an ocean wave retrieval algorithm for VV–polarization Sentinel–1 SAR data. Acta Oceanologica Sinica, 36 (7): 95–101.CrossRefGoogle Scholar
  17. Liu, G. H., Yang, X. F., Li, X. F., Zhang, B., Pichel, W., and Li, Z. W., 2013. A systematic comparison of the effect of polari zation ratio models on sea surface wind retrieval from C–band synthetic aperture radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6 (3): 1100–1108.CrossRefGoogle Scholar
  18. Meissner, T., and Wentz, F. J., 2012. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Transactions on Geoscience and Remote Sensing, 50 (8): 3004–3026.CrossRefGoogle Scholar
  19. Monaldo, F. M., Jackson, C., Li, X. F., and Pichel, W., 2016. Preliminary evaluation of Sentinel–1A wind speed retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (6): 2638–2642.CrossRefGoogle Scholar
  20. Monaldo, F. M., Thompson, D. R., Pichel, W., and Clemente–Colon, P., 2004. A systematic comparison of QuikSCAT and SAR ocean surface wind speeds. IEEE Transactions on Geoscience and Remote Sensing, 42 (2): 283–291.CrossRefGoogle Scholar
  21. Mouche, A. A., and Chapron, B., 2015. Global C–band Envisat, RADARSAT–2 and Sentinel–1 SAR measurements in co–polarization and cross–polarization. Journal of Geophysical Research, 120 (11): 7195–7207.Google Scholar
  22. Mouche, A. A., Hauser, D., Daloze, J. F., and Guerin, C., 2005. Dual polarization measurements at C–band over the ocean: Results from airborne radar observations and comparison with ENVISAT ASAR data. IEEE Transactions on Geoscience and Remote Sensing, 43 (3): 753–769.CrossRefGoogle Scholar
  23. Quilfen, Y., Bentamy, A., Elfouhaily, T. M., Katsaros, K., and Tournadre, J., 1998. Observation of tropical cyclones by highresolution scatterometry. Journal of Geophysical Research, 103 (C4): 7767–7786.Google Scholar
  24. Shao, W. Z., Li, X. F., Huang, P., Zhang, B., and Yang, X. F., 2017a. Bridging the gap between cyclone wind and wave by C–band SAR measurements. Journal of Geophysical Research, 122 (8): 6714–6724.Google Scholar
  25. Shao, W. Z., Li, X. M., Lehner, S., and Guan, C. L., 2014a. Development of polarization ratio model for sea surface wind field retrieval from TerraSAR–X HH polarization data. International Journal of Remote Sensing, 35 (11–12): 4046–4063.CrossRefGoogle Scholar
  26. Shao, W. Z., Sheng, Y. X., and Sun, J., 2017b. Preliminary assessment of wind and wave retrieval from Chinese Gaofen–3 SAR imagery. Sensors, 17 (8): 1705.CrossRefGoogle Scholar
  27. Shao, W. Z., Sun, J., Guan, C. L., and Sun, Z. F., 2014b. A method for sea surface wind field retrieval from SAR image mode data. Journal of Ocean University of China, 13 (2): 198–204.CrossRefGoogle Scholar
  28. Shao, W. Z., Yuan, X. Z., Sheng, Y. X., Sun, J., Zhou, W., and Zhang, Q. J., 2018. Development of wind speed retrieval from cross–polarization Chinese Gaofen–3 synthetic aperture radar in typhoons. Sensors, 18 (2): 412.CrossRefGoogle Scholar
  29. Shao, W. Z., Zhang, Z., Li, X. M., and Wang, W. L., 2016. Sea surface wind speed retrieval from TerraSAR–X HH–polarization data using an improved polarization ratio model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (11): 4991–4997.CrossRefGoogle Scholar
  30. Soisuvarn, S., Jelenak, Z., Chang, P. S., Alsweiss, S. O., and Zhu, Q., 2013. CMOD5.H–A high wind geophysical model function for C–band vertically polarized satellite scatterometer measurements. IEEE Transactions on Geoscience and Remote Sensing, 51 (6): 3744–3760.CrossRefGoogle Scholar
  31. Stoffelen, A., and Anderson, D., 1997. Scatterometer data interpretation: Derivation of the transfer function, CMOD4. Journal of Geophysical Research, 102: 5767–5780.CrossRefGoogle Scholar
  32. Thompson, D. R., Elfouhaily, T. M., and Chapron, B., 1998. Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 3: 1671–1673.Google Scholar
  33. Vachon, P. W., and Dobson, F. W., 2000. Wind retrieval from RADARSAT SAR images selection of a suitable C–band HH polarization wind retrieval model. Canadian Journal of Remote Sensing, 26 (4): 2122–2131.CrossRefGoogle Scholar
  34. Verspeek, J., Stoffelen, A., Portabella, M., Bonekamp, H., Anderson, C., and Saldana, J. F., 2009. Validation and calibration of ASCAT using CMOD5.N. IEEE Transactions on Geoscience and Remote Sensing, 48 (1): 386–395.CrossRefGoogle Scholar
  35. Wackerman, C. C., Clemente–Colon, P., Pichel, W., and Li, X. F., 2002. An analytical two–scale model to predict C–VV and C–HH radar cross section values. Canadian Journal of Remote Sensing, 28 (3): 367–384.CrossRefGoogle Scholar
  36. Wang, H., Yang, J. S., Mouche, A. A., Shao, W. Z., Zhu, J. H., Ren, L., and Xie, C. H., 2017. GF–3 SAR ocean wind retrieval: The first view and preliminary assessment. Remote Sensing, 9 (7): 694.CrossRefGoogle Scholar
  37. Xu, Q., Cheng, Y. C., Li, X. F., Fang, C., and Pichel, W., 2011. Ocean surface wind speed of hurricane Helene observed by SAR. Procedia Environmental Sciences, 10 (1): 2097–2101.CrossRefGoogle Scholar
  38. Xu, Q., Lin, H., Li, X. F., Zuo, J. C., Zheng, Q. A., Pichel, W., and Liu, Y. G., 2010. Assessment of an analytical model for sea surface wind speed retrieval from Spaceborne SAR. International Journal of Remote Sensing, 31 (4): 993–1108.CrossRefGoogle Scholar
  39. Xu, Q., Lin, H., Zheng, Q. A., Xiu, P., Cheng, Y. C., and Liu, Y. G., 2008. Evaluation of ENVISAT ASAR data for sea surface wind retrieval in Hong Kong coastal waters of China. Acta Oceanologica Sinica, 27 (4): 1–6.Google Scholar
  40. Yang, X. F., Li, X. F., Pichel, W., and Li, Z. W., 2011a. Comparison of ocean surface winds from ENVISAT ASAR, Metop ASCAT scatterometer, buoy Measurements, and NOGAPS model. IEEE Transactions on Geoscience and Remote Sensing, 49 (12): 4743–4750.CrossRefGoogle Scholar
  41. Yang, X. F., Li, X. F., Zheng, Q. A., Gu, X., Pichel, W., and Li, Z. W., 2011b. Comparison of ocean–surface winds retrieved from QuikSCAT scatterometer and Radarsat–1 SAR in offshore waters of the U.S. west coast. IEEE Geoscience and Remote Sensing Letters, 8 (1): 163–167.CrossRefGoogle Scholar
  42. Zhang, B., Perrie, W., and He, Y. J., 2011a. Wind speed retrieval from RADARSAT–2 quad–polarization images using a new polarization ratio model. Journal of Geophysical Research, 116 (C8): 1318–1323.Google Scholar
  43. Zhang, B., Perrie, W., Vachon, P. W., Li, X. F., Pichel, W., and Guo, J., 2011b. Ocean vector winds retrieval from C–band fully polarimetric SAR measurements. IEEE Transactions on Geoscience and Remote Sensing, 50 (11): 4252–4261.CrossRefGoogle Scholar
  44. Zhou, L., Zheng, G., Li, X. F., Yang, J. S., Ren, L., Chen, P., Zhang, H., and Lou, X., 2017. An improved local gradient method for sea surface wind direction retrieval from SAR Imagery. Remote Sensing, 9 (7): 671.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Weizeng Shao
    • 1
  • Shuai Zhu
    • 1
  • Jian Sun
    • 2
    Email author
  • Xinzhe Yuan
    • 3
  • Yexin Sheng
    • 1
  • Qingjun Zhang
    • 4
  • Qiyan Ji
    • 1
  1. 1.Marine Science and Technology CollegeZhejiang Ocean UniversityZhoushanChina
  2. 2.Physical Oceanography Laboratory/CIMSTOcean University of China and Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.National Satellite Ocean Application ServiceState Oceanic AdministrationBeijingChina
  4. 4.Beijing Institute of Spacecraft System EngineeringBeijingChina

Personalised recommendations