Advertisement

Journal of Ocean University of China

, Volume 18, Issue 1, pp 232–238 | Cite as

High Individual Variability in Beak Stable Isotopes of Jumbo Squid off Peruvian Exclusive Economic Zone (EEZ) Waters in the Analysis of Migratory and Foraging Ecology

  • Bilin Liu
  • Yue Jin
  • Xinjun Chen
  • Jianhua Li
  • Weiguo Qian
  • Na Liu
  • Mengyao Huan
Article
  • 2 Downloads

Abstract

Stable isotopes (δ13C and δ15N) have been widely used to track cephalopod habitat, migration and trophic structure. In this study, we analyzed the δ13C and δ15N values in 245 Dosidicus gigas beaks collected during 2009–2010 and in 2013 off Peruvian Exclusive Economic Zone (EEZ) waters. High individual variation in beak stable isotopes was shown with values ranging from −19.4‰ to −15.8‰ for δ13C and from 5.0‰ to 15.1‰ for δ15N. A generalized additive model (GAM) showed that latitude, mantle length and distance to shelf break significantly described the isotope variation with deviance ranging from 16.6% in δ13C to 36.3% in δ15N. Large variability in beak δ13C values for a given size and sampling station indicated that D. gigas off the Peruvian EEZ waters migrate in different ways when they occupy a large range of habitats for their ontogeny. Low baseline δ15N values suggested that spatial changes in diet trophic level may be the main determinative factor in beak δ15N variation. We conclude that high variability in beak δ15N values for a given set of explanatory variables indicated that D. gigas is an opportunistic predator with highly diverse dietary habitats. This study further develops our knowledge of the life history of D. gigas in such a highly dynamic region.

Key words

isotopes variability trophic level Beak Dosidicus gigas Peru GAM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Special thanks to the anonymous reviewers for helpful comments on the manuscript. We thank Mrs. Chunxia Gao for the measurement of isotope values and Dr. Christopher J. Somes for sharing baseline isotope data. We thank Dr. Pauline H. Lovell and anonymous English experts, for editing the English text of a draft of this manuscript. This work was sponsored by the Shanghai Pujiang Program (No. 18PJ1404100) and the National Natural Science Foundation of China (Nos. 41306127 and 41276156).

References

  1. Anderson, C. I. H., and Rodhouse, P. G., 2001. Life cycles, oceanography and variability ommastrephid squid in variable oceanographic environments. Fisheries Research, 54: 133–143.CrossRefGoogle Scholar
  2. Argüelles, J., Lorrain, A., Cherel, Y., Graco, M., Tafur, R., Alegre, A., Espinoza, P., Taipe, A., Ayón, P., and Bertrand, A., 2012. Tracking habitat and resource use for the jumbo squid Dosidicus gigas: A stable isotope analysis in the Northern Humboldt Current System. Marine Biology, 159: 2105–2116.CrossRefGoogle Scholar
  3. Argüelles, J., Rodhouse, P. G., Villegas, P., and Castillo, G., 2001. Age, growth and population structure of the jumbo flying squid Dosidicus gigas in Peruvian waters. Fisheries Research, 54: 51–61.CrossRefGoogle Scholar
  4. Bazzino, G., Gilly, W. F., Markaida, U., Salinas–Zavala, C. A., and Ramos–Castillejos, J., 2010. Horizontal movements, vertical–habitat utilization and diet of the jumbo squid (Dosidicus gigas) in the Pacific Ocean off Baja California Sur, Mexico. Progress in Oceanography, 86: 59–71.CrossRefGoogle Scholar
  5. Burnham, K. P., and Anderson, D. R., 2002. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach. 2nd edition. Springer–Verlag, New York, 515pp.Google Scholar
  6. Cherel, Y., and Hobson, K. A., 2005. Stable isotopes, beaks and predators: A new tool to study the trophic ecology of cephalopods, including giant and colossal squids. Proceedings of the Royal Society B, 272: 1601–1607.CrossRefGoogle Scholar
  7. Cherel, Y., and Hobson, K. A., 2007. Geographical variation in carbon stable isotope signatures of marine predators: A tool to investigate their foraging areas in the Southern Ocean. Marine Ecology Progress and Series, 329: 281–287.CrossRefGoogle Scholar
  8. Cherel, Y., Ducatez, S., Fontaine, C., Richard, P., and Guinet, C., 2008. Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Marine Ecology Progress and Series, 370: 239–247.CrossRefGoogle Scholar
  9. Cherel, Y., Fontaine, C., Jackson, G. D., Jackson, C. H., and Richard, P., 2009. Tissue, ontogenic and sex–related differences in d13C and d15N values of the oceanic squid Todarodes fillippovae (Cephalopoda: Ommastrephidae). Marine Biology, 156: 699–708.CrossRefGoogle Scholar
  10. DeNiro, M. J., and Epstein, S., 1978. Influence of diet on distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42: 495–506.CrossRefGoogle Scholar
  11. DeNiro, M. J., and Epstein, S., 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45: 341–351.CrossRefGoogle Scholar
  12. Fang, Z., Thompson, K., Jin, Y., Chen, X. J., and Chen, Y., 2016. Preliminary analysis of beak stable isotopes (d13C and d15N) stock variation of neon flying squid, Ommastrephes bartramii, in the North Pacific Ocean. Fisheries Research, 177: 153–163.CrossRefGoogle Scholar
  13. Field, J. C, Elliger, C., Baltz, K., Gillespie, G., Gilly, W. F., Ruiz–Cooley, I., Pearse, D., Stewart, J. S., Matsubu, W., and Walker, W., 2013. Foraging ecology and movement patterns of the Humboldt squid in the California Current. Deep Sea Research Part II, 95 (15): 37–51.CrossRefGoogle Scholar
  14. Fry, B., 2006. Stable Isotope Ecology. Springer, New York, 320pp.CrossRefGoogle Scholar
  15. Graham, B. S., Koch, P. L., Newsome, S. D., McMahon, K. W., and Aurioles, D., 2010. Using isoscapes to trace movements and foraging behavior of top predators in oceanic ecosystems. In: Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping. West, J. B., et al., eds., Springer, Berlin, 299–318.CrossRefGoogle Scholar
  16. Gilly, W. F., Markaida, U., Baxter, C. H., Block, B. A., Boustany, A., Zeidberg, L., Reisenbichler, K., Robison, B., Bazzino, G., and Salinas, C., 2006. Vertical and horizontal migrations by the jumbo squid Dosidicus gigas revealed by electronic tagging. Marine Ecology Progress and Series, 324: 1–17.CrossRefGoogle Scholar
  17. Guerreiro, M., Phillips, R. A., Cherel, Y., Ceia, F. R., Alvito, P., Rosa, R., and Xavier, J., 2015. Habitat and trophic ecology of Southern Ocean cephalopods from stable isotope analyses. Marine Ecology Progress and Series, 530: 119–134.CrossRefGoogle Scholar
  18. Hobson, K. A., 1999. Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia, 120: 314–326.CrossRefGoogle Scholar
  19. Hobson, K. A., and Welch, H. E., 1992. Determination of trophic relationships within a high Arctic marine food web using d13C and d15N analysis. Marine Ecology Progress and Series, 84: 9–18.CrossRefGoogle Scholar
  20. Hoving, H. J., Gilly, W. F., Markaida, U., Benoit–Bird, K. J., Brown, Z. W., Daniel, P., Field, J. C., Parassenti, L., Liu, B. L., and Campos, B., 2013. Extreme plasticity in life–history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Global Change Biology, 19 (7): 2089–2103.CrossRefGoogle Scholar
  21. Hunsicker, M. E., Essington, T. E., Aydin, K. Y., and Ishida, B., 2010. Predatory role of the commander squid Berryteuthis magister in the eastern Bering Sea: Insights from stable isotopes and food habits. Marine Ecology Progress and Series, 415: 91–108.CrossRefGoogle Scholar
  22. Ikeda, Y., Onaka, S., Takai, N., Kidokoro, H., Arai, N., and Sakamoto, W., 1998. Migratory routes of the Japanese common squid (Todarodes pacificus) inferred from analyses of statolith trace elements, and nitrogen and carbon stable isotopes. International Council for the Exploration of the Sea (CM Papers and Reports), CM, M11: 1–4.Google Scholar
  23. Jackson, G. D., Bustamante, P., Cherel, Y., Fulton, E. A., Grist, E. P. M., Jackson, C. H., Nichols, P. D., Pethybridge, H., Phillips, K., Ward, R. D., and Xavier, J. C., 2007. Applying new tools to cephalopod trophic dynamics and ecology: Perspectives from the Southern Ocean Cephalopod Workshop, February 2–3, 2006. Review of Fish Biology and Fisheries, 17: 79–99.CrossRefGoogle Scholar
  24. Jereb, P., and Roper, C. F. E., 2010. Cephalopods of the World: An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date. Myopsid and Oegopsid Squids. Vol. 2. Food and Agriculture Organization of the United Nations, Rome, 315–318.Google Scholar
  25. Keyl, F., Argüelles, J., Mariátegui, L., Tafur, R., Wolff, M., and Yamashiro, C., 2008. A hypothesis on range expansion and spatio–temporal shifts in size–at–maturity of jumbo squid (Dosidicus gigas) in the eastern Pacific Ocean. CalCOFI Report, 49: 119–128.Google Scholar
  26. Liu, B. L., Chen, X. J., Chen, Y., Tian, S. Q., Li, J. H., Fang, Z., and Yang, M. X., 2013. Age, maturation and population structure of the Humboldt squid, Dosidicus gigas off Peruvian Exclusive Economic Zones. Chinese Journal of Oceanology and Liminology, 31 (1): 81–91.CrossRefGoogle Scholar
  27. Logan, J. M., and Lutcavage, M. E., 2013. Assessment of trophic dynamics of cephalopods and large pelagic fishes in the central North Atlantic Ocean using stable isotope analysis. Deep Sea Research Part II, 95: 63–73.CrossRefGoogle Scholar
  28. Lorrain, A., Argüelles, J., Alegre, A., Bertrand, A., Munaron, J. M., Richard, P., and Cherel, Y., 2011. Sequential isotopic signature along gladius highlights contrasted individual foraging strategies of jumbo squid (Dosidicus gigas). PLoS One, 6 (7): e22194.CrossRefGoogle Scholar
  29. Lorrain, A., Graham, B. S., Popp, B. N., Allain, V., Olson, R. J., Hunt, B. P. V., Potier, M., Fry, B., Galván–Magaña, F., Menkes, C. E. R., Kaehler, S., and Ménard, F., 2015. Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep Sea Research Part II, 113: 188–198.CrossRefGoogle Scholar
  30. Ménard, F., Lorrain, A., Potier, M., and Marsac, F., 2007. Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean. Marine Biology, 153 (2): 141–152.CrossRefGoogle Scholar
  31. Mendes, S., Newton, J., Reid, R. J., Zuur, A. F., and Pierce, G. J., 2007. Stable carbon and nitrogen isotope ratio profiling of sperm whale teeth reveals ontogenetic movements and trophic ecology. Oecologia, 151 (4): 605–615.CrossRefGoogle Scholar
  32. Navarro, J., Coll, M., Somes, C. J., and Olson, R. J., 2013. Trophic niche of squids: Insights from isotopic data in marine systems worldwide. Deep–Sea Research II, 95: 93–102.CrossRefGoogle Scholar
  33. Nesis, K. N., 983. Dosidicus gigas. In: Cephalopod Life Cycles, Vol 1. Boyle, P. R., ed., Academic Press, London, 215–231.Google Scholar
  34. Nigmatullin, C. M., Nesis, K. N., and Arkhipkin, A. I., 2001. A review of the biology of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae). Fisheries Research, 54: 9–19.CrossRefGoogle Scholar
  35. Ohkouchi, N., Tsuda, R., Chikaraishi, Y., and Tanabe, K., 2013. A preliminary estimate of the trophic position of the deepwater ram’s horn squid Spirula spirula based on the nitrogen isotopic composition of amino acids. Marine Biology, 160: 773–779.CrossRefGoogle Scholar
  36. Olson, R. J., and Young, J. W., 2007. The role of squid in open ocean ecosystems. Report of a GLOBEC–CLIOTOP/PFRP workshop. GLOBEC Report, 24: 1–94.Google Scholar
  37. Pethybridge, H. R., Young, J. W., Kuhnert, P. M., and Farley, J. H., 2015. Using stable isotopes of albacore tuna and predictive models to characterize bioregions and examine ecological change in the SW Pacific Ocean. Progress in Oceanography, 134: 293–303.CrossRefGoogle Scholar
  38. Post, D. M., 2007. Using stable isotopes to estimate trophic position: Models, methods and assumption. Ecology, 83: 703–718.CrossRefGoogle Scholar
  39. Rodhouse, P. G., and Nigmatullin, C. M., 1996. Role as consumers. Philosophical Transactions of the Royal Society of London Series B, 351: 1003–1022.CrossRefGoogle Scholar
  40. Rosa, R., Yamashiro, C., Markaida, U., Rodhouse, P. G. K., Waluda, C. M., Salinas–Zavala, C., Keyl, F., O’Dor, R., Stewart, J. S., and Gilly, W. F., 2013. Dosidicus gigas, Humboldt squid. In: Advances in Squid Biology, Ecology and Fisheries, Part II Oegopsid Squids. Rosa, R., et al., eds., Nova Science Publishers, Inc., New York, 169–206.Google Scholar
  41. Ruiz–Cooley, R. I., and Gerrodette, T., 2012. Tracking largescale latitudinal patterns of d13C and d15N along the E Pacific using epi–mesopelagic squid as indicators. Ecosphere, 3 (7): 1–17.Google Scholar
  42. Ruiz–Cooley, R. I., Balance, L. T., and McCarthy, M. D., 2013. Range expansion of the jumbo squid in the NE Pacific: d15N decrypts multiple origins, migration and habitat use. PLoS One, 8 (3): e59651.CrossRefGoogle Scholar
  43. Ruiz–Cooley, R. I., Engelhaupt, D. T., and Ortega–Ortiz, J. G., 2012. Contrasting C and N isotope ratios from sperm whale skin and squid between the Gulf of Mexico and Gulf of California: Effect of habitat. Marine Biology, 159: 151–164.CrossRefGoogle Scholar
  44. Ruiz–Cooley, R. I., Gendron, D., Aguíñiga, S., Mesnick, S., and Carriquiry, J. D., 2004. Trophic relationships between sperm whales and jumbo squid using stable isotope of C and N. Marine Ecology Progress and Series, 277: 275–283.CrossRefGoogle Scholar
  45. Ruiz–Cooley, R. I., Markaida, U., Gendron, D., and Aguíñiga, S., 2006. Stable isotopes in jumbo squid (Dosidicus gigas) beaks to estimate its trophic position: Comparison between stomach contents and stable isotopes. Journal of the Marine Biological Association of the United Kingdom, 86: 437–445.CrossRefGoogle Scholar
  46. Ruiz–Cooley, R. I., Villa, E. C., and Gould, W. R., 2010. Ontogenetic variation of d13C and d15N recorded in the gladius of the jumbo squid Dosidicus gigas: Geographic differences. Marine Ecology Progress and Series, 399: 187–198.CrossRefGoogle Scholar
  47. Schell, D. M., Barnett, B. A., and Vinette, K. A., 1998. Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi and Beaufort seas. Marine Ecology Progress and Series, 162: 11–23.CrossRefGoogle Scholar
  48. Schimmelmann, A., 2011. Carbon, nitrogen and oxygen stable isotope ratios in chitin. In: Chitin. Topics in Geobiology. Gupta, N. S. ed., Springer Netherlands, 81–103.CrossRefGoogle Scholar
  49. Seco, J., Roberts, J., Ceia, F. R., Baeta, A., Ramos, J. A., Paiva, V. H., and Xavier, J. C., 2016. Distribution, habitat and trophic ecology of Antarctic squid Kondakovia longimana and Moroteuthis knipovitchi inferences from predators and stable isotopes. Polar Biology, 39 (1): 167–175.CrossRefGoogle Scholar
  50. Sherwood, G. D., and Rose, G. A., 2005. Stable isotope analysis of some representative fish and invertebrates of the Newfoundland and Labrador continental shelf food web. Estuarine Coastal and Shelf Science, 63: 537–549.CrossRefGoogle Scholar
  51. Somes, C. J., Schmittner, A., Galbraith, E. D., Lehmann, M. F., Altabet, M. A., Montoya, J. P., Letelier, R. M., Mix, A. C., Bourbonnais, A., and Eby, M., 2010. Simulating the global distribution of nitrogen isotopes in the ocean. Global Biogeochemecal Cycles, 24: GB4019.Google Scholar
  52. Stowasser, G., Pierce, G. J., Moffat, C. F., Collins, M. A., and Forsythe, J. W., 2006. Experimental study on the effect of diet on fatty acid and stable isotope profiles of the squid Lolliguncula brevis. Journal of Experimental Marine Biology and Ecology, 333 (1): 97–114.Google Scholar
  53. Takai, N., Onaka, S., Ikeda, Y., Yatsy, A., Kidokoro, H., and Sakamoto, W., 2000. Geographical variations in carbon and nitrogen stable isotope ratios in squid. Journal of the Marine Biological Association of the United Kingdom, 80: 675–684.CrossRefGoogle Scholar
  54. Wing, B. L., 2006. Unusual invertebrates and fish observed in the Gulf of Alaska, 2004–2005. PICES Press, 14: 26–28.Google Scholar
  55. Wood, S. N., 2006. Generalized additive models: An introduction with R. Chapman and Hall/CRC, Boca Raton, Florida, USA, 383pp.CrossRefGoogle Scholar
  56. Xavier, J. C., Allcock, A. L., Cherel, Y., Lipinski, M. R., Pierce, G. J., Rodhouse, P. G. K., Rosa, R., Shea, E. K., Strugnell, J. M., Vidal, E. A. G., Villanueva, R., and Ziegler, A., 2015. Future challenges in cephalopod research. Journal of the Marine Biological Association of the United Kingdom, 95 (5): 999–1015.CrossRefGoogle Scholar
  57. Zimmer, I., Piatkowski, U., and Brey, T., 2007. The trophic link between squid and the emperor penguin Aptenodytes forsteri at Pointe Géologie, Antarctica. Marine Biology, 152: 1187–1195.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bilin Liu
    • 1
    • 2
    • 3
    • 4
    • 5
  • Yue Jin
    • 1
  • Xinjun Chen
    • 1
  • Jianhua Li
    • 1
    • 2
    • 3
  • Weiguo Qian
    • 1
    • 4
    • 5
  • Na Liu
    • 1
  • Mengyao Huan
    • 1
  1. 1.College of Marine SciencesShanghai Ocean UniversityShanghaiChina
  2. 2.National Engineering Research Center for Oceanic FisheriesShanghaiChina
  3. 3.The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries ResourcesMinistry of EducationShanghaiChina
  4. 4.Key Laboratory of Oceanic Fisheries ExplorationMinistry of AgricultureShanghaiChina
  5. 5.Scientific Observing and Experimental Station of Oceanic Fishery ResourcesMinistry of AgricultureShanghaiChina

Personalised recommendations