Advertisement

Journal of Ocean University of China

, Volume 18, Issue 1, pp 185–192 | Cite as

Purification and Characterization of a Novel Hydrolase That Can Specifically Degrade the Polysaccharide Isolated from Green Seaweed Ulva prolifera

  • Jiaxin Li
  • Pei Zhang
  • Liang Hong
  • Chenguang LiuEmail author
Article
  • 29 Downloads

Abstract

The extracellular polysaccharide hydrolase-producing strain EP-1 was isolated from seawater and identified as Paenibacillus pabuli. Furthermore, a homogeneous extracellular polysaccharide hydrolase from Paenibacillus pabuli EP-1 was purified by combining ion-exchange chromatography and size exclusion chromatography with a purification fold of 90.69 and recovery of 16.23%. Characterization of the purified polysaccharide hydrolase revealed a molecular mass of 38 kDa and optimum activity at 45°C and pH 6.0. The polysaccharide hydrolase maintained its stability within a wide range of pH (3.0–12.0) and thermal stability when the temperature was below 50°C. The presence of Hg2+, Fe2+, Mn2+, Co2+ and SDS notably decreased hydrolase activity, and organic solvents such as formaldehyde, acetone, DMF and acetonitrile completely inhibited hydrolase activity. The purified hydrolase had no activity on agar, carrageenan, gellan gum, sodium alginate, or starch, but effectively hydrolyzed the polysaccharide from Ulva prolifera. The Km and Vmax values of this hydrolase were 43.84 mg mL−1 and 4.33 mg mL−1 min−1, respectively. The sequence analysis with quantitative time-of-flight mass spectrometry indicated that the hydrolase was an endoglucanase.

Key words

characterization hydrolase polysaccharide purification Ulva prolifera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported by the fund of Science and Technology Development Project of Shandong Province (No. 2015GGE29028).

References

  1. Barth, G., and Gaillardin, C., 1997. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiology Reviews, 19: 219–237.CrossRefGoogle Scholar
  2. Blanco, A., Diaz, P., Martinez, J., Vidal, T., Torres, A., and Pastor, F., 1998. Cloning of a new endoglucanase gene from Bacillus sp. BP–23 and characterisation of the enzyme. Performance in paper manufacture from cereal straw. Applied Microbiology and Biotechnology, 50: 48–54.Google Scholar
  3. Cho, M., Yang, C., Kim, S. M., and You, S., 2010. Molecular characterization and biological activities of watersoluble sulfated polysaccharides from Enteromorpha prolifera. Food Science and Biotechnology, 19: 525–533.CrossRefGoogle Scholar
  4. Collén, P. N., Sassi, J. F., Rogniaux, H., Marfaing, H., and Helbert, W., 2011. Ulvan lyases isolated from the Flavobacteria Persicivirga ulvanivorans are the first members of a new polysaccharide lyase family. Journal of Biological Chemistry, 286: 42063–42071.CrossRefGoogle Scholar
  5. Dou, W., Wei, D., Li, H., Li, H., Rahman, M. M., Shi, J., Xu, Z., and Ma, Y., 2013. Purification and characterisation of a bifunctional alginate lyase from novel Isoptericola halotolerans CGMCC 5336. Carbohydrate Polymers, 98: 1476–1482.CrossRefGoogle Scholar
  6. Gupta, V., Trivedi, N., Kumar, M., Reddy, C. R. K., and Jha, B., 2013. Purification and characterization of exo–ß–agarase from an endophytic marine bacterium and its catalytic potential in bioconversion of red algal cell wall polysaccharides into galactans. Biomass and Bioenergy, 49: 290–298.CrossRefGoogle Scholar
  7. Hayden, H. S., Blomster, J., Maggs, C. A., Silva, P. C., Stanhope, M. J., and Waaland, J. R., 2003. Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. European Journal of Phycology, 38: 277–294.CrossRefGoogle Scholar
  8. Hiqashi–Okaj, K., Otani, S., and Okai, Y., 1999. Potent suppressive effect of a Japanese edible seaweed, Enteromorpha prolifera (Sujiao–nori) on initiation and promotion phases of chemically induced mouse skin tumorigenesis. Cancer Letters, 140: 21–25.CrossRefGoogle Scholar
  9. Ibrahim, D., and Lim, S. H., 2015. In vitro antimicrobial activities of methanolic extract from marine alga Enteromorpha intestinalis. Asian Pacific Journal of Tropical Biomedicine, 5: 785–788.CrossRefGoogle Scholar
  10. Jiao, L., Li, X., Li, T., Jiang, P., Zhang, L., Wu, M., and Zhang, L., 2009. Characterization and anti–tumor activity of alkaliextracted polysaccharide from Enteromorpha intestinalis. International Immunopharmacology, 9: 324–329.CrossRefGoogle Scholar
  11. Kim, D. H., and Jeong, G. T., 2014. Antimicrobial and antioxidant activities of extracts of marine green–algae Enteromorpha intestinalis. KSBB Journal, 29: 92–97.CrossRefGoogle Scholar
  12. Kim, J. K., Cho, M. L., Karnjanapratum, S., Shin, I. S., and You, S. G., 2011. In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. International Journal of Biological Macromolecules, 49: 1051–1058.CrossRefGoogle Scholar
  13. Kirchmajer, D. M., Steinhoff, B., Warren, H., Clark, R., and in het Panhuis, M., 2014. Enhanced gelation properties of purified gellan gum. Carbohydrate Research, 388: 125–129.CrossRefGoogle Scholar
  14. Kirimura, K., Masuda, N., Iwasaki, Y., Nakagawa, H., Kobayashi, R., and Usami, S., 1999. Purification and characterization of a novel ß–agarase from an alkalophilic bacterium, Alteromonas sp. E–1. Journal of Bioscience and Bioengineering, 87: 436–441.CrossRefGoogle Scholar
  15. Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.CrossRefGoogle Scholar
  16. Li, B., Liu, S., Xing, R., Li, K., Li, R., Qin, Y., Wang, X., Wei, Z., and Li, P., 2013a. Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities. Carbohydrate Polymers, 92: 1991–1996.CrossRefGoogle Scholar
  17. Li, Y., Huang, Z., Qiao, L., Gao, Y., Guan, H., Hwang, H., Aker, W. G., and Wang, P., 2015. Purification and characterization of a novel enzyme produced by Catenovulum sp. LP and its application in the pre–treatment to Ulva prolifera for bioethanol production. Process Biochemistry, 50: 799–806.Google Scholar
  18. Li, Y., Wang, J., Yu, Y., Li, X., Jiang, X., Hwang, H., and Wang, P., 2013b. Production of enzymes by Alteromonas sp. A321 to degrade polysaccharides from Enteromorpha prolifera. Carbohydrate Polymers, 98: 988–994.Google Scholar
  19. Linberg, K. A., Fariss, R. N., Heckenlively, J. R., Farber, D. B., and Fisher, S. K., 2005. Morphological characterization of the retinal degeneration in three strains of mice carrying the rd–3 mutation. Vis Neurosci, 22: 721–734.CrossRefGoogle Scholar
  20. Lineweaver, H., and Burk, D., 1934. The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56: 658–666.CrossRefGoogle Scholar
  21. Liu, G. L., Li, Y., Chi, Z., and Chi, Z. M., 2011. Purification and characterization of ?–carrageenase from the marine bacterium Pseudoalteromonas porphyrae for hydrolysis of ?–carrageenan. Process Biochemistry, 46: 265–271.CrossRefGoogle Scholar
  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265–275.Google Scholar
  23. Mei, J., Tang, Z., Yi, Y., Wang, H., Wang, Q., and Ying, G., 2014. Purification and characterization of ß–agarase from Paenibacillus sp. Food Science and Biotechnology, 23: 1605–1609.CrossRefGoogle Scholar
  24. Miller, G. L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31: 426–428.CrossRefGoogle Scholar
  25. Pastor, F., Pujol, X., Blanco, A., Vidal, T., Torres, A., and Diaz, P., 2001. Molecular cloning and characterization of a multidomain endoglucanase from Paenibacillus sp BP–23. Evaluation of its performance in pulp refining. Applied Microbiology and Biotechnology, 55: 61–68.CrossRefGoogle Scholar
  26. Perkins, D., Pappin, N. D. J. C., Creasy, D., and Cottrell, J. S., 1999. Probability–based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20: 3551–3567.CrossRefGoogle Scholar
  27. Qi, H., Zhao, T., Zhang, Q., Li, Z., Zhao, Z., and Xing, R., 2005. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). Journal of Applied Phycology, 17: 527–534.CrossRefGoogle Scholar
  28. Qi, X., Mao, W., Gao, Y., Chen, Y., Chen, Y., Zhao, C., Li, N., Wang, C., Yan, M., Lin, C., and Shan, J., 2012. Chemical characteristic of an anticoagulant–active sulfated polysaccharide from Enteromorpha clathrata. Carbohydrate Polymers, 90: 1804–1810.CrossRefGoogle Scholar
  29. Ray, B., 2006. Polysaccharides from Enteromorpha compressa: Isolation, purification and structural features. Carbohydrate Polymers, 66: 408–416.CrossRefGoogle Scholar
  30. Ray, B., and Lahaye, M., 1995. Cell–wall polysaccharides from the marine green alga Ulva ‘rigida’ (Ulvales, Chlorophyta). Extraction and chemical composition. Carbohydrate Research, 274: 251–261.Google Scholar
  31. Ray, B., Loutelier–Bourhis, C., Lange, C., Condamine, E., Driouich, A., and Lerouge, P., 2004. Structural investigation of hemicellulosic polysaccharides from Argania spinosa: Characterisation of a novel xyloglucan motif. Carbohydrate Research, 339: 201–208.CrossRefGoogle Scholar
  32. Sakiyama, C. C., Paula, E. M., Pereira, P. C., Borges, A. C., and Silva, D. O., 2001. Characterization of pectin lyase produced by an endophytic strain isolated from coffee cherries. Letters in Applied Microbiology, 33: 117–121.CrossRefGoogle Scholar
  33. Shipkowski, S., and Brenchley, J. E., 2005. Characterization of an unusual cold–active beta–glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Applied and Environmental Microbiology, 71: 4225–4232.CrossRefGoogle Scholar
  34. Song, T., Cao, Y., Xu, H., Zhang, W., Fei, B., Qiao, D., and Cao, Y., 2014. Purification and characterization of a novel ß–agarase of Paenibacillus sp. SSG–1 isolated from soil. Journal of Bioscience and Bioengineering, 118: 125–129.CrossRefGoogle Scholar
  35. St. John, F. J., Preston, J. F., and Pozharski, E., 2012. Novel structural features of xylanase A1 from Paenibacillus sp. JDR–2. Journal of Structural Biology, 180: 303–311.CrossRefGoogle Scholar
  36. Tang, Z., Gao, H., Wang, S., Wen, S., and Qin, S., 2013. Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera. International Journal of Biological Macromolecules, 58: 186–189.CrossRefGoogle Scholar
  37. Wang, C. M., Shyu, C. L., Ho, S. P., and Chiou, S. H., 2008. Characterization of a novel thermophilic, cellulose–degrading bacterium Paenibacillus sp. strain B39. Letters in Applied Microbiology, 47: 46–53.CrossRefGoogle Scholar
  38. Wang, J., Jin, W., Hou, Y., Niu, X., Zhang, H., and Zhang, Q., 2013. Chemical composition and moisture–absorption/retention ability of polysaccharides extracted from five algae. International Journal of Biological Macromolecules, 57: 26–29.CrossRefGoogle Scholar
  39. Yamaura, I., Matsumoto, T., Funatsu, M., Shigeiri, H., and Shibata, T., 1991. Purification and some properties of agarase from Pseudomonas sp. PT–5. Agricultural and Biological Chemistry, 55: 2531–2536.Google Scholar
  40. Yaoi, K., Nakai, T., Kameda, Y., Hiyoshi, A., and Mitsuishi, Y., 2005. Cloning and characterization of two xyloglucanases from Paenibacillus sp. strain KM21. Applied and Environmental Microbiology, 71: 7670–7678.CrossRefGoogle Scholar
  41. Yu, Y., Li, Y., Du, C., Mou, H., and Wang, P., 2017. Compositional and structural characteristics of sulfated polysaccharide from Enteromorpha prolifera. Carbohydrate Polymers, 165: 221–228.CrossRefGoogle Scholar
  42. Zhang, Z., Wang, X., Mo, X., and Qi, H., 2013. Degradation and the antioxidant activity of polysaccharide from Enteromorpha linza. Carbohydrate Polymers, 92: 2084–2087.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jiaxin Li
    • 1
  • Pei Zhang
    • 1
  • Liang Hong
    • 1
  • Chenguang Liu
    • 1
    Email author
  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoChina

Personalised recommendations