Journal of Ocean University of China

, Volume 18, Issue 1, pp 31–42 | Cite as

Responses of Yellow Sea Cold Water Mass to Typhoon Bolaven

  • Jianchao Li
  • Guangxue LiEmail author
  • Jishang Xu
  • Lulu Qiao
  • Yanyan Ma
  • Dong Ding
  • Shidong Liu


A two-month seabed-mounted observation (YSG1 area) was carried out in the western Yellow Sea Cold Water Mass (YSCWM) using an RDI-300K acoustic Doppler current profiler (ADCP) placed at a water depth of 38 m in late summer, 2012. On August 2012, Typhoon Bolaven passed east of YSG1 with a maximum wind speed of 20 m s−1. The water depth, bottom temperature, and profile current velocities (including u, v and w components) were measured, and the results showed that the typhoon could induce horizontal current with speed greater than 70 cm s−1 in the water column, which is especially rare at below 20 meters above bottom (mab). The deepening velocity shear layer had an intense shear velocity of around 10 cm s−1 m−1, which indicated the deepening of the upper mixed layer. In the upper water column (above 20 mab), westward de-tide current with velocity greater than 30 cm s−1 was generated with the typhoon’s onshore surge, and the direction of current movement shifted to become southward. In the lower water column, a possible pattern of eastward compensation current and delayed typhoon-driven current was demonstrated. During the typhoon, bottom temperature variation was changed into diurnal pattern because of the combined influence of typhoon and tidal current. The passage of Bolaven greatly intensified local sediment resuspension in the bottom layer. In addition, low-density particles constituted the suspended particulate matter (SPM) around 10 mab, which may be transported from the central South Yellow Sea by the typhoon. Overall, the intensive external force of the Typhoon Bolaven did not completely destroy the local thermocline, and most re-suspended sediments during the typhoon were restricted within the YSCWM.

Key words

Yellow Sea Cold Water Mass typhoon typhoon-driven current thermocline suspended particulate matter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The WRF wind field data are available online at http:// We are thankful to Prof. Shanhong Gao for providing the above data. The satellite remote sensing data are available at The seabed-mounted observed data in this work is collected and managed by Ocean University of China. This study was supported by the National Natural Science Foundation of China (Nos. 41806190, 41030856), National Program on Key Basic Research Project of China (973 Program, No. 2005CB422304), Qingdao Postdoctoral Application Research Project Funding, the Fundamental Research Funds for the Central Universities (Nos. 20171305, 201562030, 20176 2015, 201822027), and the Project of Taishan Scholar. We also thank the Shared Voyage of National Nature Science Foundation of China for their support.


  1. Bian, C., Jiang, W., and Song, D., 2010. Terrigenous transportation to the Okinawa Trough and the influence of typhoons on suspended sediment concentration. Continental Shelf Research, 30 (10): 1189–1199. DOI: 10.1016/j.csr.2010.03.008.CrossRefGoogle Scholar
  2. Black, W. J., and Dickey, T. D., 2008. Observations and analyses of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda. Journal of Geophysical Research: Oceans, 113 (C8): C08009, DOI: 10.1029/2007JC00 4358.CrossRefGoogle Scholar
  3. Chang, S. K., Lim, H. S., Jin, Y. J., Shim, J. S., Moon, I. J., You, J. O., and You, H. Y., 2014. Responses of coastal waters in the Yellow Sea to Typhoon Bolaven. Journal of Coastal Research, 70: 278–283.CrossRefGoogle Scholar
  4. Chen, G., Xue, H., Wang, D., and Xie, Q., 2013. Observed nearinertial kinetic energy in the northwestern South China Sea. Journal of Geophysical Research: Oceans, 118 (10): 4965–4977. DOI: 10.1002/jgrc.20371.Google Scholar
  5. Emanuel, K., 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 (7051): 686–688.CrossRefGoogle Scholar
  6. Glenn, S. M., Miles, T. N., Seroka, G. N., Xu, Y., Forney, R. K., Yu, F., Roarty, H., Schofield, O., and Kohut, J., 2016. Stratified coastal ocean interactions with tropical cyclones. Nature Communications, 7: 10887. DOI: 10.1038/ncomms10887.CrossRefGoogle Scholar
  7. Glenn, S., Seroka, G., Miles, T., Xu, Y., Roarty, H., Kohut, J., and Schofield, O., 2014. The role of regional–scale ocean observations for improved hurricane intensity and impact forecasts in coastal regions. IEEE Oceans 2014–Taipei, Taipei, 1–9.CrossRefGoogle Scholar
  8. Guan, S., Zhao, W., Huthnance, J., Tian, J., and Wang, J., 2014. Observed upper ocean response to Typhoon Megi (2010) in the northern South China Sea. Journal of Geophysical Research: Oceans, 119 (5): 3134–3157. DOI: 10.1002/2013JC0 09661.Google Scholar
  9. Halliwell Jr., G. R., Shay, L. K., Brewster, J. K., and Teague, W. J., 2011. Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Monthly Weather Review, 139 (3): 921–945. DOI: 10.1175/2010MWR3104.1.CrossRefGoogle Scholar
  10. Hao, J., Chen, Y., Wang, F., and Lin, P., 2012. Seasonal thermocline in the China seas and northwestern Pacific Ocean. Journal of Geophysical Research: Oceans, 117 (C2): C02022, DOI: 10.1029/2011JC007246.CrossRefGoogle Scholar
  11. Hoitink, A. J. F., and Hoekstra, P., 2005. Observations of suspended sediment from ADCP and OBS measurements in a mud–dominated environment. Coastal Engineering Journal, 52 (2): 103–118. DOI: 10.1016/j.coastaleng.2004.09.005.CrossRefGoogle Scholar
  12. Holdaway, G. P., Thorne, P. D., Flatt, D., Jones, S. E., and Prandle, D., 1999. Comparison between ADCP and transmissometer measurements of suspended sediment concentration. Continental Shelf Research, 19 (3): 421–441. DOI: 10.1016/S0278–4343(98)00097–1.CrossRefGoogle Scholar
  13. Jaimes, B., and Shay, L. K., 2009. Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Monthly Weather Review, 137 (12): 4188–4207. DOI: 10.117 5/2009MWR2849.1.CrossRefGoogle Scholar
  14. Jaimes, B., and Shay, L. K., 2010. Near–inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. Journal of Physical Oceanography, 40 (6): 1320–1337. DOI: 10.1175/2010JPO4309.1.CrossRefGoogle Scholar
  15. Jiang, S., Dickey, T. D., Steinberg, D. K., and Madin, L. P., 2007. Temporal variability of zooplankton biomass from ADCP backscatter time series data at the Bermuda Testbed Mooring site. Deep–Sea Research Part I, 54 (4): 608–636. DOI: 10.10 16/j.dsr.2006.12.011.CrossRefGoogle Scholar
  16. Kaneda, A., Takeoka, H., and Koizumi, Y., 2002. Periodic occurrence of diurnal signal of ADCP backscatter strength in Uchiumi Bay, Japan. Estuarine, Coastal and Shelf Science, 55 (2): 323–330. DOI: 10.1006/ecss.2001.0908.CrossRefGoogle Scholar
  17. Ko, D. S., Chao, S. Y., Wu, C. C., and Lin, I. I., 2014. Impacts of Typhoon Megi (2010) on the South China Sea. Journal of Geophysical Research: Oceans, 119 (7): 4474–4489. DOI: 10. 1002/2013JC009785.Google Scholar
  18. Li, J., Li, G., Xu, J., Dong, P., Qiao, L., Liu, S., Sun, P., and Fan, Z., 2016. Seasonal evolution of the Yellow Sea Cold Water Mass and its interactions with ambient hydrodynamic system. Journal of Geophysical Research: Oceans, 121: 6779–6792. DOI: 10.1002/2016JC012186.Google Scholar
  19. Li, J., Li, G., Xu, J., Qiao, L., Dong, P., Ding, D., Liu, S., and Sun, P., 2015. Seasonal suspended particles distribution patterns in western South Yellow Sea based on acoustic Doppler current profiler observation. Journal of Ocean University of China, 14 (3): 385–398. DOI: 10.1007/s11802–015–2762–2.CrossRefGoogle Scholar
  20. Li, M., Zhong, L., Boicourt, W. C., Zhang, S., and Zhang, D., 2007. Hurricane–induced destratification and restratification in a partially–mixed estuary. Journal of Marine Research, 65 (2): 169–192.CrossRefGoogle Scholar
  21. Li, Y., Wang, A., Qiao, L., Fang, J., and Chen, J., 2012. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang–Fujian coast, China. Continental Shelf Research, 37: 92–100. DOI: 10. 1016/j.csr.2012.02.020.CrossRefGoogle Scholar
  22. Lü, X., Qiao, F., Xia, C., Wang, G., and Yuan, Y., 2010. Upwelling and surface cold patches in the Yellow Sea in summer: Effects of tidal mixing on the vertical circulation. Continental Shelf Research, 30 (6): 620–632. DOI: 10.1016/j.csr. 2009.09.002.CrossRefGoogle Scholar
  23. MacKinnon, J. A., and Gregg, M. C., 2003. Mixing on the latesummer New England Shelf–solibores, shear, and stratification. Journal of Physical Oceanography, 33 (7): 1476–1492.CrossRefGoogle Scholar
  24. Miles, T., Glenn, S., Kohut, J., Seroka, G., and Xu, Y., 2013. Observations of Hurricane Sandy from a glider mounted aquadopp profiler. IEEE Oceans 2013–San Diego, San Deigo, USA, 1–8.Google Scholar
  25. Miles, T., Seroka, G., Kohut, J., Schofield, O., and Glenn, S., 2015. Glider observations and modeling of sediment transport in Hurricane Sandy. Journal of Geophysical Research: Oceans, 120 (3): 1771–1791. DOI: 10.1002/2014JC010474.Google Scholar
  26. Mitchell, D. A., Teague, W. J., Jarosz, E., and Wang, D. W., 2005. Observed currents over the outer continental shelf during Hurricane Ivan. Geophysical Research Letters, 32 (11): L11610, DOI: 10.1029/2005GL023014.CrossRefGoogle Scholar
  27. Nam, S., Kim, D., and Moon, W. M., 2012. Observed impact of mesoscale circulation on oceanic response to Typhoon Man–Yi (2007). Ocean Dynamics, 62 (1): 1–12. DOI: 10.1007/s102 36–011–0490–8.CrossRefGoogle Scholar
  28. Nauw, J. J., Merckelbach, L. M., Ridderinkhof, H., and Van Aken, H. M., 2014. Long–term ferry–based observations of the suspended sediment fluxes through the Marsdiep inlet using acoustic Doppler current profilers. Journal of Sea Research, 87: 17–29. DOI: 10.1016/j.seares.2013.11.013.CrossRefGoogle Scholar
  29. Oh, K., Lee, S., Song, K., Lie, H., and Kim, Y., 2013. The temporal and spatial variability of the Yellow Sea Cold Water Mass in the southeastern Yellow Sea, 2009–2011. Acta Ocea nologica Sinica, 32 (9): 1–10. DOI: 10.1007/s13131–013–03 46–9.CrossRefGoogle Scholar
  30. Park, S., and Chu, P. C., 2007. Synoptic distributions of thermal surface mixed layer and thermocline in the southern Yellow and East China Seas. Journal of Oceanography, 63 (6): 1021–1028. DOI: 10.1007/s10872–007–0085–7.CrossRefGoogle Scholar
  31. Pawlowicz, R., Beardsley, B., and Lentz, S., 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28 (8): 929–937. DOI: 10.1016/S0098–3004(02)00013–4.CrossRefGoogle Scholar
  32. Price, J. F., 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11 (2): 153–175. DOI: 10.1175/1520–0485(1981)011<0153:UORTAH>2.0.CO;2.CrossRefGoogle Scholar
  33. Price, J. F., Sanford, T. B., and Forristall, G. Z., 1994. Forced stage response to a moving hurricane. Journal of Physical Oceanography, 24 (2): 233–260. DOI: 10.1175/1520–0485 (1994)024<0233:FSRTAM>2.0.CO;2.CrossRefGoogle Scholar
  34. Sanford, T. B., Price, J. F., and Girton, J. B., 2011. Upper–ocean response to hurricane Frances (2004) observed by profiling EM–APEX floats. Journal of Physical Oceanography, 41 (6): 1041–1056. DOI: 10.1175/2010JPO4313.1.CrossRefGoogle Scholar
  35. Sanford, T. B., Price, J. F., Girton, J. B., and Webb, D. C., 2007. Highly resolved observations and simulations of the ocean response to a hurricane. Geophysical Research Letters, 34 (13): L13604, DOI: 10.1029/2007GL029679.CrossRefGoogle Scholar
  36. Shearman, R. K., 2005. Observations of near–inertial current variability on the New England shelf. Journal of Geophysical Research: Oceans, 110 (C2): L02012, DOI: 10.1029/2004JC 002341.CrossRefGoogle Scholar
  37. Simpson, J. H., Hyder, P., Rippeth, T. P., and Lucas, I. M., 2002. Forced oscillations near the critical latitude for diurnal–inertial resonance. Journal of Physical Oceanography, 32 (1): 177–187. DOI: 10.1175/1520–0485(2002)032<0177:FONTCL>2.0. CO;2.CrossRefGoogle Scholar
  38. Sun, L., Zheng, Q. A., Tang, T., Chuang, W., Li, L., Hu, J., and Wang, D., 2012. Upper ocean near–inertial response to 1998 Typhoon Faith in the South China Sea. Acta Oceanologica Sinica, 31 (2): 25–32. DOI: 10.1007/s13131–012–0189–9.CrossRefGoogle Scholar
  39. Sun, Z., Hu, J., Zheng, Q., and Li, C., 2011. Strong near–inertial oscillations in geostrophic shear in the northern South China Sea. Journal of Oceanography, 67 (4): 377–384. DOI: 10.100 7/s10872–011–0038–z.CrossRefGoogle Scholar
  40. Suzuki, S., Niino, H., and Kimura, R., 2011. The mechanism of upper–oceanic vertical motions forced by a moving typhoon. Fluid Dynamics Research, 43 (2): 025504. DOI: 10.1088/01 69–5983/43/2/025504.CrossRefGoogle Scholar
  41. Teague, W. J., Jarosz, E., Keen, T. R., Wang, D. W., and Hulbert, M. S., 2006. Bottom scour observed under Hurricane Ivan. Geophysical Research Letters, 33 (7): L07607, DOI: 10. 1029/2005GL025281.CrossRefGoogle Scholar
  42. Teague, W. J., Jarosz, E., Wang, D. W., and Mitchell, D. A., 2007. Observed oceanic response over the upper continental slope and outer shelf during Hurricane Ivan. Journal of Physical Oceanography, 37 (9): 2181–2206. DOI: 10.1175/JP O3115.1.CrossRefGoogle Scholar
  43. Tsai, Y., Chern, C., and Wang, J., 2008. The upper ocean response to a moving typhoon. Journal of Oceanography, 64 (1): 115–130. DOI: 10.1007/s10872–008–0009–1.CrossRefGoogle Scholar
  44. Urick, R. J., 1983. Principles of Underwater Sound. McGraw–Hill Book Company, New York, 1–114.Google Scholar
  45. Van Haren, H., 2000. Properties of vertical current shear across stratification in the North Sea. Journal of Marine Research, 58 (3): 465–491.CrossRefGoogle Scholar
  46. Wada, A., Niino, H., and Nakano, H., 2009. Roles of vertical turbulent mixing in the ocean response to Typhoon Rex (1998). Journal of Oceanography, 65 (3): 373–396. DOI: 10.1007/s10 872–009–0034–8.CrossRefGoogle Scholar
  47. Wang, D. W., Mitchell, D. A., Teague, W. J., Jarosz, E., and Hulbert, M. S., 2005. Extreme waves under hurricane Ivan. Science, 309 (5736): 896–896. DOI: 10.1126/science.1112509.CrossRefGoogle Scholar
  48. Wijesekera, H. W., Wang, D. W., Teague, W. J., and Jarosz, E., 2010. High sea–loor stress induced by extreme hurricane waves. Geophysical Research Letters, 37: L11640, DOI: 10.1029/20 10GL043124.CrossRefGoogle Scholar
  49. Williams, W. J., Beardsley, R. C., Irish, J. D., Smith, P. C., and Limeburner, R., 2001. The response of Georges Bank to the passage of Hurricane Edouard. Deep–Sea Research Part II, 48 (1): 179–197. DOI: 10.1016/S0967–0645(00)00118–1.CrossRefGoogle Scholar
  50. Wu, D. X., Gao, S. H., Wang, Y. M., and Chen, X. E., 2011. Atlas of Monthly Averaged Wind and Temperature of Bohai and Yellow Sea. Ocean University of China Press, Qingdao, 1–150.Google Scholar
  51. Xia, C., Qiao, F., Yang, Y., Ma, J., and Yuan, Y., 2006. Threedimensional structure of the summertime circulation in the Yellow Sea from a wave–tide–circulation coupled model. Journal of Geophysical Research: Oceans, 111 (C11): C11S03, DOI: 10.1029/2005JC003218.Google Scholar
  52. Yang, B., Hou, Y., Hu, P., Liu, Z., and Liu, Y., 2015. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea. Journal of Geophysical Research: Oceans, 120 (5): 3817–3836. DOI: 10. 1002/2015JC010783.Google Scholar
  53. Yuan, D., Li, Y., Qiao, F., and Zhao, W., 2013. Temperature inversion in the Huanghai Sea bottom cold water in summer. Acta Oceanologica Sinica, 32 (3): 42–47. DOI: 10.1007/s131 31–013–0287–3.CrossRefGoogle Scholar
  54. Zedler, S. E., Dickey, T. D., Doney, S. C., Price, J. F., Yu, X., and Mellor, G. L., 2002. Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995. Journal of Geophysical Research: Oceans, 107 (C12): 3232. DOI: 10.1029/2001J C000969.Google Scholar
  55. Zeng, L., Du, Y., Xie, S., and Wang, D., 2009. Barrier layer in the South China Sea during summer 2000. Dynamics of Atmospheres and Oceans, 47 (1): 38–54. DOI: 10.1016/j.dynat moce.2008.08.001.CrossRefGoogle Scholar
  56. Zhang, S. W., Wang, Q. Y., Lü, Y., Cui, H., and Yuan, Y. L., 2008. Observation of the seasonal evolution of the Yellow Sea Cold Water Mass in 1996–1998. Continental Shelf Research, 28 (3): 442–457. DOI: 10.1016/j.csr.2007.10.002.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jianchao Li
    • 1
    • 2
  • Guangxue Li
    • 2
    • 3
    Email author
  • Jishang Xu
    • 2
    • 3
  • Lulu Qiao
    • 2
    • 3
  • Yanyan Ma
    • 2
    • 3
  • Dong Ding
    • 2
    • 3
  • Shidong Liu
    • 2
    • 3
  1. 1.Fisheries CollegeOcean University of ChinaQingdaoChina
  2. 2.Key Laboratory of Submarine Sciences & Prospecting Techniques, MOEOcean University of ChinaQingdaoChina
  3. 3.College of Marine GeosciencesOcean University of ChinaQingdaoChina

Personalised recommendations