Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

First principles calculation of the electronic-optical properties of Cu2MgSn(SxSe1−x)4

  • 1 Accesses

Abstract

Based on the density functional theory with hybrid functional approach, we calculated the structural, electronic, and the optical properties of Cu2MgSn(S1-xSex)4 (CMTSSe), an potential photovoltaic material for thin film solar cells. The calculation reveals a phase transition from kesterite to stannite structure when Zn atoms are substituted by Mg atoms. In particular, the S-to-Se ratio can determine the energy splitting between the electronic states at the top of the valence band. The band gaps of CMTSSe can be tuned in the ranges of 1.01-1.58 eV. Calculated optical properties and tunable band gaps make them beneficial for achieving band-gap-graded solar cells.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Min X, Shi J J, Guo B L, Yu Q, Zhang P P, Tian Q W, Li D M, Luo Y H, Wu H J, Meng Q B and Wu S X, Chin. Phys. B 27, 016402 (2018).

  2. [2]

    Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W C, Goodrich A and Noufi R, Sol. Energ. Mater. Sol. C 101, 154 (2012).

  3. [3]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B, Adv. Energy Mater. 4, 1301465 (2013).

  4. [4]

    Gokmen T, Gunawan O, Todorov T K and Mitzi D B, Appl. Phys. Lett. 103, 103506 (2013).

  5. [5]

    Ozel F, Kus M,Yar A, Arkan E, Can M and Aljabour A, J. Mater. Sci. 50, 777 (2015).

  6. [6]

    Wei M, Du Q, Wang R, Jiang G, Liu W and Zhu C, Chem. Lett. 43, 1149 (2014).

  7. [7]

    Bekki B, Amara K and Keurti M E, Chin. Phys. B 26, 294 (2017).

  8. [8]

    Zhong G, Tse K, Zhang Y, Li X, Huang L, Yang C, Zhu J, Zeng Z, Zhang Z and Xiao X, Thin Solid Film 603, 224 (2016).

  9. [9]

    Kresse G and Furthmueller J, Comput. Mater. Sci. 6, 15 (1996).

  10. [10]

    Kresse G and Joubert D, Phys. Rev. B 59, 1758 (1999).

  11. [11]

    Heyd J, Scuseria G E and Ernzerhof M, J. Chem. Phys. 118, 8207 (2003).

  12. [12]

    Perdew J P, Burke K and Ernzerhof M, Phys. Rev. Lett. 77, 3865 (1997).

  13. [13]

    Xiao W, Wang J N, Zhao X S, Wang J W, Huang G J, Cheng L, Jiang L J and Wang L G, Sol. Energy 116, 125 (2015).

  14. [14]

    Chen S, Gong X G, Walsh A and Wei S H, Phys. Rev. B 79, 165211 (2009).

  15. [15]

    Khare A, Himmetoglu B, Cococcioni M and Aydil E S, J. Appl. Phys. 111, 123704 (2012).

  16. [16]

    Vegard L, Zeitschrift Fur Physik A Hadrons and Nuclei 5, 17 (1921).

  17. [17]

    Harb M, Sautet P, Nurlaela E, Raybaud P, Cavallo and Domen K, Basset J M and Takanae K, Phys. Chem. Chem. Phys. 6, 20548 (2014).

  18. [18]

    Harb M, J. Phys. Chem. C 119, 4565 (2015).

  19. [19]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F, Phys. Rev. B 73, 45112 (2006).

  20. [20]

    Ambrosch-Draxl C and Sofo J O, Comput. Phys. Commun. 175, 1 (2006).

Download references

Author information

Correspondence to Li-xin Zhang 张立新.

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61705077), and the Science and Technology Project of the 13th Five-year Plan of Jilin Provincial Department of Education (Nos.JJKH20180591KJ and JJKH20180583KJ).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Ding, Y., Kong, L. et al. First principles calculation of the electronic-optical properties of Cu2MgSn(SxSe1−x)4. Optoelectron. Lett. 16, 29–33 (2020). https://doi.org/10.1007/s11801-020-9042-0

Download citation