Advertisement

Optoelectronics Letters

, Volume 15, Issue 6, pp 476–480 | Cite as

Fiber-coupler-based microfluidic system for trapping of DNA biomolecules

  • Ji-xuan Wu (吴继旋)
  • Qian Wang (王芊)
  • Bin-bin Song (宋彬彬)
  • Bo Liu (刘波)
  • Hao Zhang (张昊)
  • Cheng Zhang (张诚)
  • Shao-xiang Duan (段少祥)
  • Hua Bai (白华)Email author
Article
  • 16 Downloads

Abstract

A miniature fiber-coupler-based microfluidic system is proposed for trapping of DNA biomolecules. The loop-shaped fiber-coupler is fabricated by using flame tapering technique and integrated in a microfluidic channel. Probe-DNA immobilized on the fiber-coupler surface enables specific recognition of target DNA sequences and effectively facilitates the trapping of target DNA molecules. The binding characteristics of biomolecules on the fiber-coupler surface have been theoretically analyzed and experimentally demonstrated. Experimental results indicate that the spectral response of the loop-shaped fiber coupler immobilized with probe DNA exhibits a red-shift with the trapping of the DNA biomolecules. The proposed microfluidic system possesses such desirable merits as simple structure, label-free method and high integration, which make it a promising candidate for applications in molecular biology and related bioengineering areas.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Kang, S. M. Yoo, I. Yoon, S. Y. Lee and B. Kim, Nano Lett. 10, 1189 (2010).ADSCrossRefGoogle Scholar
  2. [2]
    M. S. Fliss, H. Usadel, O. L. Caballero, L. Wu, M. R. Buta, S. M. Eleff, J. Jen and D. Sidransky, Science 287, 2017 (2000).ADSCrossRefGoogle Scholar
  3. [3]
    J. Lee, K. H. Cheong, N. Huh, S. Kim, J. Choi and C. Ko, Lab Chip 6, 886 (2006).CrossRefGoogle Scholar
  4. [4]
    T. D. Harris, P. R. Buzby, H. Babcock, E. Beer, J. Bowers, I. Braslavsky, M. Causey, J. Colonell, J. DiMeo, J. W. Efcavitch, E. Giladi, J. Gill, J. Healy, M. Jarosz, D. Lapen, K. Moulton, S. R. Quake, K. Steinmann, E. Thayer, A. Tyurina, R. Ward, H. Weiss and Z. Xie, Science 320, 106 (2008).ADSCrossRefGoogle Scholar
  5. [5]
    S. Ahn and D. R. Walt, Anal. Chem. 77, 5041 (2005).CrossRefGoogle Scholar
  6. [6]
    J. A. Ferguson, F. J. Steemers and D. R. Walt, Anal. Chem. 72, 5618 (2000).CrossRefGoogle Scholar
  7. [7]
    J. Wang, Anal. Chem. Acta 500, 247 (2003).CrossRefGoogle Scholar
  8. [8]
    H. Cai, X. Cao, Y Jiang, P. He and Y. Fang, Anal. Bioanal. Chem. 375, 287 (2003).CrossRefGoogle Scholar
  9. [9]
    H. Chen, J. Wei, J. Pan, W. Zhang, F. Dang, Z. Zhang and J. Zhang, Biosens. Bioelectron. 91, 328 (2017).CrossRefGoogle Scholar
  10. [10]
    X. Zhao, R. T. Dytioco and W. Tan, J. Am. Chem. Soc. 125, 11474 (2003).CrossRefGoogle Scholar
  11. [11]
    D. Daems, K. Knez, F. Delport, D. Spasic and J. Lammertyn, Analyst 141, 1906 (2016).ADSCrossRefGoogle Scholar
  12. [12]
    K. Sato, A. Tachihara, B. Renberg, K. Mawatari, K. Sato, Y. Tanaka, J. Jarvius, M. Nilsson and T. Kitamori, Lab Chip 10, 1262 (2010).CrossRefGoogle Scholar
  13. [13]
    Y. Liu, S. Chen, Q. Liu and W. Peng, Opt. Exp. 23, 20686 (2015).ADSCrossRefGoogle Scholar
  14. [14]
    S. Panich, M. H. Sleiman, I. Steer, S. Ladame and J. B. Edel, ACS Sens. 1, 1097 (2016).CrossRefGoogle Scholar
  15. [15]
    B. Song, H. Zhang, B. Liu, W. Lin and J. Wu, Biosens. Bioelectron. 81, 151 (2016).CrossRefGoogle Scholar
  16. [16]
    H. S. Jang, K. N. Park, J. P. Kim, S. J. Sim, O. J. Kwon, Y. G. Han and K. S. Lee, Opt. Exp. 17, 3855 (2009).ADSCrossRefGoogle Scholar
  17. [17]
    D. Sun, T. Guo, Y. Ran, Y. Huang and B. Guan, Biosens. Bioelectron. 61, 541 (2014).CrossRefGoogle Scholar
  18. [18]
    K. T. V. Grattan and D. T. Sun, Sens. Actuators A, Phys. 82, 40 (2000).CrossRefGoogle Scholar
  19. [19]
    H. Tazawa, T. Kanie and M. Katayama, Appl. Phys. Lett. 91, 113901 (2007).ADSCrossRefGoogle Scholar
  20. [20]
    W. Lin, H. Zhang, B. Song, Y. Miao, B. Liu, D. Yan and Y. Liu, Opt. Exp. 23, 11123 (2015).ADSCrossRefGoogle Scholar
  21. [21]
    L. Mao, S. Pu, D. Su, Z. Wang, X. Zeng and M. Lahoubi, J. Appl. Phys. 120, 093102 (2016).ADSCrossRefGoogle Scholar
  22. [22]
    M. Ding, P. Wang and G. Brambilla, Opt. Exp. 20, 5402 (2012).ADSCrossRefGoogle Scholar
  23. [23]
    S. Pu, L. Luo, J. Tang, L. Mao and X. Zeng, IEEE Photon. Technol. Lett. 28, 1073 (2016).ADSCrossRefGoogle Scholar
  24. [24]
    Y. Chen, S. Yan, X. Zheng, F. Xu and Y. Lu, Opt. Exp. 22, 2443 (2014).ADSCrossRefGoogle Scholar
  25. [25]
    J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng and P. Wu, Opt. Fiber Technol. 20, 239 (2004).ADSCrossRefGoogle Scholar
  26. [26]
    Z. He, F. Tian, Y. Zhu, N. Lavlinskaia and H. Du, Biosens. Bioelectron. 26, 4774 (2011).CrossRefGoogle Scholar
  27. [27]
    Y Liu, S Chen, Q Liu and W Peng, Opt. Exp. 23, 20686 (2015).ADSCrossRefGoogle Scholar
  28. [28]
    R. Levicky and A. Horgan, Trends Biotechnol. 23, 143 (2005).CrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ji-xuan Wu (吴继旋)
    • 1
  • Qian Wang (王芊)
    • 1
  • Bin-bin Song (宋彬彬)
    • 2
  • Bo Liu (刘波)
    • 3
  • Hao Zhang (张昊)
    • 3
  • Cheng Zhang (张诚)
    • 1
  • Shao-xiang Duan (段少祥)
    • 3
  • Hua Bai (白华)
    • 1
    Email author
  1. 1.Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin Key Laboratory of Engineering Technologies for Cell Phamaceutica, College of Electronic and Information EngineeringTianjin Polytechnic UniversityTianjinChina
  2. 2.Key Laboratory of Computer Vision and Systems, Ministry of Education, School of Computer Science and EngineeringTianjin University of TechnologyTianjinChina
  3. 3.Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina

Personalised recommendations