Advertisement

Optoelectronics Letters

, Volume 15, Issue 6, pp 401–405 | Cite as

Bidirectional optical amplifier for time transfer using bidirectional WDM transmission

  • Xuan Ding (丁旋)
  • Gui-ling Wu (吴龟灵)Email author
  • Fa-xing Zuo (左发兴)
  • Jian-ping Chen (陈建平)
Article
  • 14 Downloads

Abstract

In this letter, we propose a bidirectional optical amplification scheme for fiber-optic time transfer based on bidirectional wavelength-division multiplexing (WDM) transmission. The proposed scheme employs single unidirectional erbiumdoped fiber amplifier (Uni-EDFA) for commercial optical networks to implement bidirectional optical amplification. Since including isolators, the effect of backscattering due to the accumulated amplification can be efficiently suppressed by the proposed amplifier. The proposed scheme is validated over different length fiber links in laboratory. Experimental results show that the proposed amplifier can support fiber-optic time transfer over several thousands of kilometers with an additional bidirectional delay difference fluctuation at picosecond magnitude.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Rost, D. Piester, W. Yang, T. Feldmann, T. Wübbena and A. Bauch, Metrologia 49, 772 (2012).ADSCrossRefGoogle Scholar
  2. [2]
    V. Smotlacha and A. Kuna, Two-Way Optical Time and Frequency Transfer between IPE and BEV, 2012 European Frequency and Time Forum, 375 (2012).CrossRefGoogle Scholar
  3. [3]
    H. Zhang, G. Wu, L. Hu, X. Li and J. Chen, IEEE Photonics Journal 7, 1 (2015).Google Scholar
  4. [4]
    Ł. Śliwczyński, P. Krehlik, A. Czubla, Ł. Buczek and Lipiński, Metrologia 50, 133 (2013).ADSCrossRefGoogle Scholar
  5. [5]
    O. Lopez, A. Kanj, P.E. Pottie, D. Rovera, J. Achkar, C. Chardonnet, A. Amy-Klein and G. Santarelli, Applied Physics B 110, 3 (2013).CrossRefGoogle Scholar
  6. [6]
    J. Kodet, P. Pánek and I. Procházka, Metrologia 53, 18 (2015).ADSCrossRefGoogle Scholar
  7. [7]
    E.F. Dierikx, A.E. Wallin, T. Fordell, J. Myyry, P. Koponen, M. Merimaa, T.J. Pinkert, J.C.J. Koelemeij, H.Z. Peek and R. Smets, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 63, 945 (2016).CrossRefGoogle Scholar
  8. [8]
    P. Krehlik, Ł. Sliwczynski, Ł. Buczek and M. Lipinski, IEEE Transactions on Instrumentation and Measurement 61, 2844 (2012).CrossRefGoogle Scholar
  9. [9]
    C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura and N. Poli, IEEE Photonics Technology Letters 25, 1711 (2013).ADSCrossRefGoogle Scholar
  10. [10]
    K. Salwik, Ł. Śliwczyński and P. Krehlik, Proc. SPIE 10445, 104450F (2017).Google Scholar
  11. [11]
    E. Desurvire and M.N. Zervas, Physics Today 48, 56 (1995).CrossRefGoogle Scholar
  12. [12]
    Q. Cheng, B. Zhang, L. Lu, J. Jing and C. Wu, Comparative Study of Two Methods of Extend Optical Fiber Time Transfer Distance, Symposium on Photonics and Optoelectronics, 1 (2012).Google Scholar
  13. [13]
    J. Liang, C. Liu, R. Wu, F. Hu, Z. Wang, Y. Qiao and S. Yu, The Bidirectional Recirculating Loop System for 10000 km Fiber-Optic Time Transfer, 2018 Asia Communications and Photonics Conference (ACP), 1 (2018).Google Scholar
  14. [14]
    S. Ł, P. Krehlik and B. Ł, M. Lipinski, IEEE Transactions on Instrumentation and Measurement 61, 2573 (2012).CrossRefGoogle Scholar
  15. [15]
    L. Sliwczynski, P. Krehlik and K. Salwik, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 66, 632 (2019).CrossRefGoogle Scholar
  16. [16]
    M. Amemiya, M. Imae, Y. Fujii, T. Suzuyama, F.L. Hong and M. Takamoto, IEEE Transactions on Instrumentation and Measurement 59, 631 (2010).CrossRefGoogle Scholar
  17. [17]
    S. Ł, J. Kolodziej, IEEE Transactions on Instrumentation and Measurement 62, 253 (2013).CrossRefGoogle Scholar
  18. [18]
    W.J. Riley, Handbook of Frequency Stability Analysis, (2008).CrossRefGoogle Scholar
  19. [19]
    S.R. Jefferts, M.A. Weiss, J. Levine, S. Dilla, E.W. Bell and T.E. Parker, IEEE Transactions on Instrumentation and Measurement 46, 209 (1997).CrossRefGoogle Scholar
  20. [20]
    Ł. Śliwczyński, P. Krehlik and M. Lipiński, Measurement Science & Technology 21, 075302 (2010).ADSCrossRefGoogle Scholar
  21. [21]
    G. Wu, L. Hu, H. Zhang and J. Chen, Review of Scientific Instruments 85, 1 (2014).Google Scholar
  22. [22]
    H. Zhang, G. Wu, H. Li, X. Li and J. Chen, IEEE Photonics Journal 8, 1 (2017).Google Scholar
  23. [23]
    I. BIPM, I. IFCC, I. IUPAC and O. ISO, Evaluation of measurement data—guide for the expression of uncertainty in measurement. JCGM 100: 2008, Citado en las, 167 (2008).Google Scholar
  24. [24]
    E. Samain, P. Exertier, C. Courde, P. Fridelance, P. Guillemot, M. LaasBourez and J. Torre, Metrologia 52, 423 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xuan Ding (丁旋)
    • 1
  • Gui-ling Wu (吴龟灵)
    • 1
    Email author
  • Fa-xing Zuo (左发兴)
    • 1
  • Jian-ping Chen (陈建平)
    • 1
  1. 1.State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations