Advertisement

Optoelectronics Letters

, Volume 14, Issue 5, pp 331–335 | Cite as

Numerical research on whispering-gallery modes in a triple-layer-coated microsphere resonator

  • Meng-Yu Wang (王梦宇)
  • Xue-Ying Jin (金雪莹)
  • Ke-Yi Wang (王克逸)
Article

Abstract

We numerically demonstrate that whispering-gallery modes (WGMs) in a microsphere resonator with three layers of high, low and high refractive index (RI) are analyzed by using the finite difference time domain (FDTD) method. To make the light couple in and out of the microsphere, a phase matched waveguide is used to overlap the WGMs evanescent radiation field. By changing the gap between the microsphere and waveguide, the WGMs of two high-RI layers are efficiently excited. The stored energy and the mode volume are optimized for sensing applications. The coupling structure reveals a good sensitivity of 38.29 nm/RIU (RI unit).

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Vahala K. J., Nature 424, 839 (2003).ADSCrossRefGoogle Scholar
  2. [2]
    Yang S., Wang Y. and Sun H., Advanced Optical Materials 3, 1136 (2015).CrossRefGoogle Scholar
  3. [3]
    Dong Y., Wang K. and Jin X., Applied Optics 54, 277 (2015).ADSCrossRefGoogle Scholar
  4. [4]
    Bao J., Yu K., Wang L. and Yin J., Optoelectronics Letters 13, 268 (2017).ADSCrossRefGoogle Scholar
  5. [5]
    Li J., Xiao Y., Dong W. and Zhang X., Optoelectronics Letters 12, 276 (2016).ADSCrossRefGoogle Scholar
  6. [6]
    Righini G. C. and Soria S., Sensors 16, 905 (2016).CrossRefGoogle Scholar
  7. [7]
    Foreman M. R., Swaim J. D. and Vollmer F., Advances in Optics and Photonics 7, 168 (2015).ADSCrossRefGoogle Scholar
  8. [8]
    Hanumegowda N. M., Stica C. J., Patel B. C., White I. M. and Fan X., Applied Physics Letters 87, 201107 (2005).ADSCrossRefGoogle Scholar
  9. [9]
    I. Teraoka and S. Arnold, Journal of the Optical Society of America B 24, 653 (2007).CrossRefGoogle Scholar
  10. [10]
    Teraoka I. and Arnol, S., Optics Letters 32, 1147 (2007).ADSCrossRefGoogle Scholar
  11. [11]
    Hall J. M., Afshar V. S., Henderson M. R., Reynolds T., Riesen N. and Monro T. M., Optics Express 23, 9924 (2015).ADSCrossRefGoogle Scholar
  12. [12]
    Jin X., Wang J., Wang M., Dong Y., Li F. and Wang K., Applied Optics 56, 8023 (2017).ADSCrossRefGoogle Scholar
  13. [13]
    Wang M. Y., Jin X. Y., Wang J., Chen L. M. and Wang K. Y., Acta Photonica Sinica 46, 0706003 (2017). (in Chinese)CrossRefGoogle Scholar
  14. [14]
    Shen Z., Zhou Z. H., Zou C. L., Sun F. W., Guo G. P., Dong C. H. and Guo G. C., Photonics Research 3, 243 (2015).CrossRefGoogle Scholar
  15. [15]
    Park J., Ozdemir S. K., Monifi F., Chadha T., Huang S. H., Biswas P. and Yang L., Advanced Optical Materials 2, 711 (2014).CrossRefGoogle Scholar
  16. [16]
    Choy J. T., Bradley J. D., Deotare P. B., Burgess I. B., Evans C. C., Mazur E. and Lončar M., Optics Letters 37, 539 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Meng-Yu Wang (王梦宇)
    • 1
  • Xue-Ying Jin (金雪莹)
    • 1
  • Ke-Yi Wang (王克逸)
    • 1
  1. 1.Department of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations