Advertisement

Optoelectronics Letters

, Volume 14, Issue 5, pp 325–330 | Cite as

Performance improvement of a self-heterodyne detection BOTDR system employing broad-band laser

  • Xiao-juan Li (李晓娟)
  • Yong-qian Li (李永倩)
  • Wen-xian Zeng (曾文献)
  • Han-bai Fan (范寒柏)
  • Li-xin Zhang (张立欣)
Article
  • 4 Downloads

Abstract

The self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using broad-band laser is proposed to reduce coherent Rayleigh noise and improve the system performance. Compared with the system with narrow-band laser, the stimulated Brillouin scattering (SBS) threshold can be improved by about 3 dB. The experimental results of the narrow-band laser measurements for three times independently and the broad-band laser measurement for one time are compared. The root-mean-square (RMS) errors of Brillouin linewidth for two systems with narrow-band laser and broad-band laser are 6.9 MHz and 2.7 MHz, respectively, and the RMS errors of temperature for the heated fiber are about 1.3 °C and 0.7 °C. With the broad-band laser, signal-to-noise ratio (SNR) of the unheated fiber is approximately equivalent to that of the integrated three independent Brillouin signals for the narrowband laser, and the results are believed to be beneficial for performance improvement and measurement time reduction.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Culverhouse, F. Farahi, C. N. Pannell and D. A. Jackson, Electronics Letters 25, 913 (1989).CrossRefGoogle Scholar
  2. [2]
    T. Wei, Journal of Optoelectronics·Laser 28, 492 (2017). (in Chinese)Google Scholar
  3. [3]
    X. Feng, W. J. Wu, X. Y. Li, X. W. Zhang and J. Zhou, Smart Structures and Systems 15, 245 (2015).CrossRefGoogle Scholar
  4. [4]
    H. Y. Xia, M. J. Shangguan, G. L. Shentu, Ch. Wang, J. W. Qiu, M. Y. Zheng, X. P. Xie, X. K. Dou, Q. Zhang and J. W. Pan, Optics Communications 381, 37 (2016).ADSCrossRefGoogle Scholar
  5. [5]
    K. Nishiguchi, Li Che-Hsien, A. Guzik and K. Kishida, Sensors14, 4731 (2014).CrossRefGoogle Scholar
  6. [6]
    H. H. Kee, G. P. Lees and T. P. Newson, Optics Letters 25, 695 (2000).ADSCrossRefGoogle Scholar
  7. [7]
    S. Kim, H. Kwon, I. Yang, S. Lee, J. Kim and S. Kang, Sensors 13, 15452 (2013).CrossRefGoogle Scholar
  8. [8]
    C. L. Li, Y. G. Lu and X. P. Zhang, Electronics Letters 48, 1139 (2012).CrossRefGoogle Scholar
  9. [9]
    X. J. Li, Y. Q. Li, Y. J. He and L. X. Zhang, Acta Photonica Sinica 45, 1106004 (2016). (in Chinese)CrossRefGoogle Scholar
  10. [10]
    Y. Q. Li, X. J. Li, H. B. Fan, Q. An and L. X. Zhang, Optoelectronics Letters 13, 0414 (2017).ADSCrossRefGoogle Scholar
  11. [11]
    K. De Souza, Measurement Science and Technology 17, 1065 (2006).ADSCrossRefGoogle Scholar
  12. [12]
    Y. Q. Li, L. X. Zhang, H. B. Fan and H. Li, Optoelectronics Letters 14, 84 (2018).ADSCrossRefGoogle Scholar
  13. [13]
    S. L. Hu, L. W. Li, X. K. Yi and F. Teng, IEEE Photonics Technology Letters 29, 330 (2017).ADSCrossRefGoogle Scholar
  14. [14]
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, England: Cambridge University Press, 900 (1995).CrossRefGoogle Scholar
  15. [15]
    M. Nikles, L. Thevenaz and P. A. Robert, Journal of Lightwave Technology 15, 1842 (1997).ADSCrossRefGoogle Scholar
  16. [16]
    Y. Q. Li, X. J. Li and Q. An, Acta Optica Sinica 36, 1006001 (2016). (in Chinese)CrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiao-juan Li (李晓娟)
    • 1
  • Yong-qian Li (李永倩)
    • 2
  • Wen-xian Zeng (曾文献)
    • 1
  • Han-bai Fan (范寒柏)
    • 2
  • Li-xin Zhang (张立欣)
    • 2
  1. 1.Institute of Information TechnologyHebei University of Economics and BusinessShijiazhuangChina
  2. 2.Department of Electronic and Communication EngineeringNorth China Electric Power UniversityBaodingChina

Personalised recommendations