Advertisement

Optoelectronics Letters

, Volume 14, Issue 5, pp 384–390 | Cite as

Scaling-based energy-quality multilevel control for aerial imagery

  • Xiao-Hui Gong (宫晓蕙)
  • Hao Liu (刘浩)
  • Jia-Tong Sun (孙嘉曈)
  • Xin-Sheng Zhang (张鑫生)
  • Xiao-Fan Sun (孙晓帆)
Article
  • 7 Downloads

Abstract

This paper designs an energy-quality multilevel framework for the coding and transmission of aerial images, and then introduces a scaling-based intra encoder with flexible sampling factor (SF) and quantization parameter (QP). By experimentally investigating how different coding configurations affect the complexity-rate-quality characteristics of aerial images, this paper derives a configuration estimation model between energy-quality level and appropriate (SF, QP) configuration. By utilizing the model, a bivariate control scheme is proposed so as to progressively adjust sender’s energy consumption under quality constraints. The experimental results show that the proposed scheme can achieve better energy-quality tradeoff with a wider quality range, and reduce the energy consumption above a certain quality.

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Nguyen V. A., Tan Y. P. and Lin W. S., Adaptive Downsampling/Upsampling for Better Video Compression at Low Bit Rate, Proc. of IEEE International Symposium on Circuits and Systems, 1624 (2008).Google Scholar
  2. [2]
    Lee H., Lee Y., Lee J., Lee D. and Shin H., IEEE Transactions on Consumer Electronics 55, 1682 (2009).CrossRefGoogle Scholar
  3. [3]
    Rhee C. E., Kim J. S. and Lee H. J., EURASIP Journal on Advances in Signal Processing 1, 1 (2012).Google Scholar
  4. [4]
    Wang R. J., Huang C. W. and Chang P. C., IEEE Transactions on Circuits and Systems for Video Technology 24, 1957 (2014).CrossRefGoogle Scholar
  5. [5]
    Bruckstein A., Elad M. and Kimmel R., IEEE Transactions on Image Processing 12, 1132 (2003).ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    Barreto D., Alvarez L. D., Molina R., Katsagelos A. K. and Callico G. M., Multidimensional Systems and Signal Processing 18, 59 (2007).MathSciNetCrossRefGoogle Scholar
  7. [7]
    MPEG-H Part 2, High Efficiency Video Coding (HEVC), ISO/IEC Standard 23008-2, 2013.Google Scholar
  8. [8]
    Bai H., Lin W., Zhang M., Wang A. and Zhao Y., IEEE Transactions on Circuits and Systems for Video Technology 24, 1390 (2014).CrossRefGoogle Scholar
  9. [9]
    Pajares G., Photogrammetric Engineering & Remote Sensing 81, 281 (2015).CrossRefGoogle Scholar
  10. [10]
    Zhang L. M., Han Y. H., Yang Y., Song M. L., Yan S. C. and Tian Q., IEEE Transactions on Image Processing 22, 5071 (2013).ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    Redondi A., Baroffio L., Bianchi L., Cesana M. and Tagliasacchi M., IEEE Transactions on Mobile Computing 15, 3000 (2016).CrossRefGoogle Scholar
  12. [12]
  13. [13]
    HEVC Software Repository—HM-16.7 Reference Model. https://doi.org/hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.7.
  14. [14]
    Pastuszak G. and Abramowski A., IEEE Transactions on Circuits and Systems for Video Technology 26, 210 (2016).CrossRefGoogle Scholar

Copyright information

© Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiao-Hui Gong (宫晓蕙)
    • 1
  • Hao Liu (刘浩)
    • 1
  • Jia-Tong Sun (孙嘉曈)
    • 1
  • Xin-Sheng Zhang (张鑫生)
    • 1
  • Xiao-Fan Sun (孙晓帆)
    • 1
  1. 1.College of Information Science and TechnologyDonghua UniversityShanghaiChina

Personalised recommendations