Advertisement

On the Extension of Adams–Bashforth–Moulton Methods for Numerical Integration of Delay Differential Equations and Application to the Moon’s Orbit

  • 2 Accesses

Abstract

One of the problems arising in modern celestial mechanics is the need of precise numerical integration of dynamical equations of motion of the Moon. The action of tidal forces is modeled with a time delay and the motion of the Moon is therefore described by a functional differential equation (FDE) called delay differential equation (DDE). Numerical integration of the orbit is normally being performed in both directions (forwards and backwards in time) starting from some epoch (moment in time). While the theory of normal forwards-in-time numerical integration of DDEs is developed and well-known, integrating a DDE backwards in time is equivalent to solving a different kind of FDE called advanced differential equation, where the derivative of the function depends on not yet known future states of the function. We examine a modification of Adams–Bashforth–Moulton method allowing to perform integration of the Moon’s DDE forwards and backwards in time and the results of such integration.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2

References

  1. 1.

    Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004). https://doi.org/10.1137/s0036144502417715

  2. 2.

    Ermentrout, B.: XPPAUT, pp. 519–531. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-3858-4_17

  3. 3.

    Folkner, W., Williams, J., Boggs, D., Park, R., Kuchynka, P.: The planetary and lunar ephemerides DE430 and DE431. IPN Progress Report 42-196, NASA JPL. https://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf (2014)

  4. 4.

    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics 8. Springer, Berlin (1993). https://doi.org/10.1007/978-3-540-78862-1

  5. 5.

    Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99, 1st edn. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-4342-7

  6. 6.

    Hofmann, F., Müller, J.: Relativistic tests with lunar laser ranging. Classical and Quantum Gravity 35(3), 035015 (2018). https://doi.org/10.1088/1361-6382/aa8f7a

  7. 7.

    Pavlov, D.A., Skripnichenko, V.I.: Rework of the ERA software system: ERA-8. In: Malkin, Z., Capitaine, N. (eds.) Proceedings of the Journées 2014 “Systèmes de référence spatio-temporels, pp. 243–246. Pulkovo Observatory, St Petersburg (2015)

  8. 8.

    Pavlov, D.A., Williams, J.G., Suvorkin, V.V.: Determining parameters of Moon’s orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models. Celest. Mech. Dyn. Astron. 126(1), 61–88 (2016). https://doi.org/10.1007/s10569-016-9712-1

  9. 9.

    Shampine, L., Thompson, S.: Solving DDEs in MATLAB. Appl. Numer. Math. 37(4), 441–458 (2001). https://doi.org/10.1016/S0168-9274(00)00055-6

  10. 10.

    Williams, J.G.: Personal communication

  11. 11.

    Williams, J.G., Boggs, D.H.: Tides on the moon: theory and determination of dissipation. J. Geophys. Res. Planets 120(4), 689–724 (2015). https://doi.org/10.1002/2014JE004755

  12. 12.

    Williams, J.G., Boggs, D.H.: Secular tidal changes in lunar orbit and earth rotation. Celest. Mech. Dyn. Astron. 126(1), 89–129 (2016). https://doi.org/10.1007/s10569-016-9702-3

  13. 13.

    Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., Dickey, J.O.: Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. Planets 106(E11), 27933–27968 (2001). https://doi.org/10.1029/2000JE001396

Download references

Acknowledgements

Authors are grateful to Sergey Kurdubov (IAA RAS) and John Chandler (Harvard CfA) for useful discussions related to this work. Steve Moshier’s implementation of Adams–Bashforth–Moulton method (http://moshier.net/ssystem.html) was a helpful reference.

Author information

Correspondence to Dan Aksim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aksim, D., Pavlov, D. On the Extension of Adams–Bashforth–Moulton Methods for Numerical Integration of Delay Differential Equations and Application to the Moon’s Orbit. Math.Comput.Sci. (2020) doi:10.1007/s11786-019-00447-y

Download citation

Keywords

  • Numerical integration
  • Multistep methods
  • Delay differential equations
  • Celestial mechanics

Mathematics Subject Classification

  • 85-08
  • 70F15
  • 39-04
  • 65D30
  • 65L06
  • 65Q20
  • 65Z05