Advertisement

An Algorithm for Computing Grothendieck Local Residues II: General Case

  • Katsuyoshi OharaEmail author
  • Shinichi Tajima
Article
  • 1 Downloads

Abstract

Grothendieck local residue is considered in the context of symbolic computation. An effective method based on the theory of holonomic D-modules is proposed for computing Grothendieck local residues. The key is the notion of Noether operator associated to a local cohomology class. The resulting algorithm and an implementation are described with illustrations.

Keywords

Local residues Local cohomology Holonomic D-modules Noether operators 

Mathematics Subject Classification

Primary 32A27 Secondary 13N10 

Notes

References

  1. 1.
    Ehrenpreis, L.: Fourier Analysis in Several Complex Variables. Wiley, Hoboken (1970)zbMATHGoogle Scholar
  2. 2.
    Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomial ideals. J. Symb. Comput. 6, 149–167 (1988)CrossRefGoogle Scholar
  3. 3.
    Hartshorne, R.: Residues and Duality. Lecture Notes in Mathematics, vol. 20. Springer, Berlin (1966)CrossRefGoogle Scholar
  4. 4.
    Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3 revised edn. North-Holland, Amsterdam (1990)zbMATHGoogle Scholar
  5. 5.
    Kashiwara, M.: On the maximally overdetermined system of linear differential equations. I. Publ. Res. Inst. Math. Sci. 10, 563–579 (1975)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kashiwara, M.: On the holonomic systems of linear differential equations. II. Invent. Math. 49, 121–135 (1978)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kashiwara, M.: On holonomic systems of micro-differential equations. III—Systems with regular singularities. Publ. Res. Inst. Math. Sci. 17, 813–979 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Noro, M.: New algorithms for computing primary decomposition of polynomial ideals. In: Mathematical Software—ICMS 2010. Lecture Notes in Computer Science 6327, pp. 233–244. Springer, Berlin (2010)CrossRefGoogle Scholar
  9. 9.
    Noro, M. et al.: Risa/Asir a computer algebra system, 1994–2019. http://www.math.kobe-u.ac.jp/Asir/
  10. 10.
    Oaku, T.: Algorithms for the \(b\)-functions, restrictions, and algebraic local cohomology groups of \(D\)-modules. Adv. Appl. Math. 19, 61–105 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Oaku, T., Takayama, N.: Algorithms for \(D\)-modules—restriction, tensor product, localization, and local cohomology groups. J. Pure Appl. Algebra 156, 267–308 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ohara, K., Tajima, S.: An algorithm for computing Grothendieck local residues I: shape basis case. Math. Comput. Sci. 13, 205–216 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Palamodev, V.P.: Linear Differential Operators with Constant Coefficients. Springer, Berlin (1970)CrossRefGoogle Scholar
  14. 14.
    Tajima, S.: On Noether differential operators attached to a zero-dimensional primary ideal—a shape basis case—. In: Finite or Infinite Dimensional Complex Analysis and Applications, pp. 357–366. Kyushu Univ. Press, Fukuoka (2005) Google Scholar
  15. 15.
    Tajima, S.: Noether differential operators and Grothendieck local residues. RIMS Kôkyûroku 1431, 123–136 (2005). (in Japanese)Google Scholar
  16. 16.
    Tajima, S.: An algorithm for computing exponential polynomial solutions of constant coefficients holonomic PDE’s—generic case—. In: Son, L.H., Tutschke, W., Jain, S. (eds.) Methods of Complex and Clifford Analysis, pp. 335–344. SAS International Publ, Delhi (2006)Google Scholar
  17. 17.
    Tajima, S., Oaku, T., Nakamura, Y.: Multidimensional local residues and holonomic \(D\)-modules. RIMS Kôkyûroku 1033, 59–70 (1998). (in Japanese)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Tajima, S., Nakamura, Y.: Computational aspects of Grothendieck local residues. Séminaires et Congrès 10, 287–305 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsKanazawa UniversityKakuma-machi, KanazawaJapan
  2. 2.Graduate School of Science and TechnologyNiigata UniversityNishi-kuJapan

Personalised recommendations