A Different Construction for Some Classes of Quantum MDS Codes

  • Mustafa SarıEmail author
  • Emre Kolotoğlu


Constructing quantum codes with large minimum distance plays a significant role in quantum computation and communication. Quantum maximum-distance separable (MDS) codes have important place among quantum codes since they are optimal with regard to the maximality of their minimum distances. In this paper, by making use of constacyclic codes over \(F_{q^2}\) and Hermitian construction for quantum codes, we give different constructions for some classes of quantum MDS codes.


Quantum MDS codes Constacyclic codes Cyclotomic cosets 

Mathematics Subject Classification

94B05 94B15 81P70 81P45 



  1. 1.
    Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inform. Theory 47(7), 3065–3072 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aydin, N., Siap, I., Ray-Chaudhuri, D.K.: The structure of 1-generator quasi-twisted codes and new linear codes. Des. Codes Cryptogr. 24(3), 313–326 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ezerman, M.F., Jitman, S., Kiah, H.M., Ling, S.: Pure asymmetric quantum MDS codes from CSS construction: a complete characterization. Int. J. Quantum Inf. 11(03), 1350027 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 757–775 (2004)CrossRefGoogle Scholar
  6. 6.
    Grassl, M., Rötteler, M.: Quantum MDS codes over small fields. In: Proceedings of the International Symposium on Information Theory, pp. 1104–1108 (2015)Google Scholar
  7. 7.
    He, X., Xu, L., Chen, H.: New \(q\)-ary quantum MDS codes with distances bigger than \(\frac{q}{2}\). Quantum Inf. Process. 15(7), 2745–2758 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hu, X., Zhang, G., Chen, B.: Constructions of new nonbinary quantum codes. Int. J. Theor. Phys. 54(1), 92–99 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hu, L., Yue, Q., Zhu, X.: New quantum MDS code from constacyclic codes. Chin. Ann. Math. Ser. B 37(6), 891–898 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jin, L., Kan, H., Wen, J.: QuantumMDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84(3), 463–471 (2016)CrossRefGoogle Scholar
  13. 13.
    Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Krishna, A., Sarwate, D.V.: Pseudocyclic maximum-distance-separable codes. IEEE Trans. Inf. Theory 36(4), 880–884 (1990)MathSciNetCrossRefGoogle Scholar
  17. 17.
    La Guardia, G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    La Guardia, G.G.: On classical and quantum MDS-convolutional BCH codes. IEEE Trans. Inf. Theory 60(1), 304–312 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    La Guardia, G.G.: On negacyclic MDS-convolutional codes. Linear Algebra Appl. 448, 85–96 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li, S., Xiong, M., Ge, G.: Pseudo-cyclic codes and the construction of quantum MDS codes. IEEE Trans. Inf. Theory 62(4), 1703–1710 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Qian, J., Zhang, L.: Improved constructions for quantummaximumdistance separable codes. QuantumInf. Process. 16(1), 20 (2017)CrossRefGoogle Scholar
  22. 22.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995)CrossRefGoogle Scholar
  23. 23.
    Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14(3), 881–889 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yang, Y., Cai, W.: On self-dual constacyclic codes over finite fields. Des. Codes Cryptogr. 74(2), 355–364 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhang, G., Chen, B.: New quantum MDS codes. Int. J. Quantum Inf. 12(4), 1450019 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, T., Ge, G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61(9), 5224–5228 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhang, T., Ge, G.: Quantum MDS codes with large minimum distance. Des. Codes Cryptogr. 83(3), 503–517 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Industrial EngineeringDoğuş UniversityAcıbademTurkey
  2. 2.Department of MathematicsYildiz Technical UniversityEsenlerTurkey

Personalised recommendations