Binary Isodual Codes Having an Automorphism of Odd Prime Order

  • Stefka BouyuklievaEmail author
  • Radka Russeva
  • Emine Karatash


The aim of this work is to describe the structure and properties of the binary isodual codes having automorphisms of odd prime order and to present a method for their construction. As an example, we construct binary isodual codes of length 30 and minimum weight \(\ge \,7\) having an automorphism of order 5.


Linear codes Formally self-dual codes Authomorphisms 

Mathematics Subject Classification

94B05 94B60 



  1. 1.
    Betsumiya, K., Harada, M.: Binary optimal odd formally self-dual codes. Des. Codes Cryptogr. 23, 11–22 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bouyukliev, I.: What is Q-Extension? Serdica J. Comput. 1, 115–130 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bouyukliev, I., Dzhumalieva-Stoeva, M., Monev, V.: Classification of binary self-dual codes of length 40. IEEE Trans. Inf. Theory 61, 4253–4258 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bouyuklieva, S., Bouyukliev, I.: Classification of the extremal formally self-dual even codes of length 30. Adv. Math. Commun. 4, 433–439 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Conway, J.H., Sloane, N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inf. Theory 36, 1319–1333 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Accessed 8 Oct 2019
  7. 7.
    Gulliver, T.A., Östergård, P.R.J.: Binary optimal linear rate 1/2 codes. Discrete Math. 283, 255–261 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Harada, M., Östergård, P.R.J.: Classification of extremal formally self-dual even codes of length 22. Graphs Comb. 18, 507–516 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Huffman, W.C.: Automorphisms of codes with application to extremal doubly-even codes of lenght 48. IEEE Trans. Inf. Theory 28, 511–521 (1982)CrossRefGoogle Scholar
  10. 10.
    Huffman, W.C.: Decomposing and shortening codes using automorphisms. IEEE Trans. Inf. Theory 32, 833–836 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  12. 12.
    Jaffe, D.B.: Optimal binary linear codes of length \(\le \,30\). Discrete Math. 223, 135–155 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kim, H.J., Lee, Y.: Construction of isodual codes over \(GF(q)\). Finite Fields Their Appl. 45, 372–385 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ling, S., Sole, P.: On the algebraic structure of quasi-cyclic codes I: finite fields. IEEE Trans. Inf. Theory 47, 2751–2760 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Simonis, J.: The [18, 9, 6] code is unique. Discrete Math. 106(107), 439–448 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Han, S., Lee, H., Lee, Y.: Binary formally self-dual odd codes. Des. Codes Cryptogr. 61, 141–150 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yorgov, V.: A method for constructing inequivalent self-dual codes with applications to length 56. IEEE Trans. Inf. Theory 33, 77–82 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stefka Bouyuklieva
    • 1
    Email author
  • Radka Russeva
    • 2
  • Emine Karatash
    • 2
  1. 1.Faculty of Mathematics and InformaticsSt. Cyril and St. Methodius University of Veliko TarnovoVeliko TarnovoBulgaria
  2. 2.Faculty of Mathematics and InformaticsShumen UniversityShumenBulgaria

Personalised recommendations