Advertisement

Binary Isodual Codes Having an Automorphism of Odd Prime Order

  • Stefka BouyuklievaEmail author
  • Radka Russeva
  • Emine Karatash
Article
  • 5 Downloads

Abstract

The aim of this work is to describe the structure and properties of the binary isodual codes having automorphisms of odd prime order and to present a method for their construction. As an example, we construct binary isodual codes of length 30 and minimum weight \(\ge \,7\) having an automorphism of order 5.

Keywords

Linear codes Formally self-dual codes Authomorphisms 

Mathematics Subject Classification

94B05 94B60 

Notes

References

  1. 1.
    Betsumiya, K., Harada, M.: Binary optimal odd formally self-dual codes. Des. Codes Cryptogr. 23, 11–22 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bouyukliev, I.: What is Q-Extension? Serdica J. Comput. 1, 115–130 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bouyukliev, I., Dzhumalieva-Stoeva, M., Monev, V.: Classification of binary self-dual codes of length 40. IEEE Trans. Inf. Theory 61, 4253–4258 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bouyuklieva, S., Bouyukliev, I.: Classification of the extremal formally self-dual even codes of length 30. Adv. Math. Commun. 4, 433–439 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Conway, J.H., Sloane, N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inf. Theory 36, 1319–1333 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed 8 Oct 2019
  7. 7.
    Gulliver, T.A., Östergård, P.R.J.: Binary optimal linear rate 1/2 codes. Discrete Math. 283, 255–261 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Harada, M., Östergård, P.R.J.: Classification of extremal formally self-dual even codes of length 22. Graphs Comb. 18, 507–516 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Huffman, W.C.: Automorphisms of codes with application to extremal doubly-even codes of lenght 48. IEEE Trans. Inf. Theory 28, 511–521 (1982)CrossRefGoogle Scholar
  10. 10.
    Huffman, W.C.: Decomposing and shortening codes using automorphisms. IEEE Trans. Inf. Theory 32, 833–836 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  12. 12.
    Jaffe, D.B.: Optimal binary linear codes of length \(\le \,30\). Discrete Math. 223, 135–155 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kim, H.J., Lee, Y.: Construction of isodual codes over \(GF(q)\). Finite Fields Their Appl. 45, 372–385 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ling, S., Sole, P.: On the algebraic structure of quasi-cyclic codes I: finite fields. IEEE Trans. Inf. Theory 47, 2751–2760 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Simonis, J.: The [18, 9, 6] code is unique. Discrete Math. 106(107), 439–448 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Han, S., Lee, H., Lee, Y.: Binary formally self-dual odd codes. Des. Codes Cryptogr. 61, 141–150 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yorgov, V.: A method for constructing inequivalent self-dual codes with applications to length 56. IEEE Trans. Inf. Theory 33, 77–82 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stefka Bouyuklieva
    • 1
    Email author
  • Radka Russeva
    • 2
  • Emine Karatash
    • 2
  1. 1.Faculty of Mathematics and InformaticsSt. Cyril and St. Methodius University of Veliko TarnovoVeliko TarnovoBulgaria
  2. 2.Faculty of Mathematics and InformaticsShumen UniversityShumenBulgaria

Personalised recommendations