Modular Techniques for Noncommutative Gröbner Bases

  • Wolfram Decker
  • Christian Eder
  • Viktor LevandovskyyEmail author
  • Sharwan K. Tiwari


We extend modular techniques for computing Gröbner bases from the commutative setting to the vast class of noncommutative G-algebras. As in the commutative case, an effective verification test is only known to us in the graded case. In the general case, our algorithm is probabilistic in the sense that the resulting Gröbner basis can only be expected to generate the given ideal, with high probability. We have implemented our algorithm in the computer algebra system Singular and give timings to compare its performance with that of other instances of Buchberger’s algorithm, testing examples from D-module theory as well as classical benchmark examples. A particular feature of the modular algorithm is that it allows parallel runs.


Noncommutative Gröbner bases G-algebras PBW-algebras Modular techniques 

Mathematics Subject Classification




  1. 1.
    Andres, D., Brickenstein, M., Levandovskyy, V., Martín-Morales, J., Schönemann, H.: Constructive D-module theory with SINGULAR. Math. Comput. Sci. 4(2–3), 359–383 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Apel, J.: Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung (Gröbner bases in noncommutative algebras and their applications). Karl-Marx-Univ., Leipzig (1988)Google Scholar
  3. 3.
    Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symb. Comput. 35(4), 403–419 (2003)CrossRefGoogle Scholar
  4. 4.
    Bernstein, I.: Modules over a ring of differential operators. Study of the fundamental solutions of equations with constant coefficients. Funct. Anal. Appl. 5, 89–101 (1971)CrossRefGoogle Scholar
  5. 5.
    Böhm, J., Decker, W., Fieker, C., Pfister, G.: The use of bad primes in rational reconstruction. Math. Comp. 84(296), 3013–3027 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bueso, J., Gómez-Torrecillas, J., Lobillo, F.: Re-filtering and exactness of the Gelfand–Kirillov dimension. Bull. Sci. Math. 125(8), 689–715 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bueso, J., Gómez-Torrecillas, J., Verschoren, A.: Algorithmic Methods in Non-commutative Algebra, Applications to Quantum Groups. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  8. 8.
    Castro, F.: Calculs effectifs pour les idéaux d’opérateurs différentiels. (Effective computations for ideals of differential operators). Géométrie algébrique et applications, C. R. 2ième Conf. int., La Rabida/Espagne 1984, III: Géométrie réelle. Systèmes diff́erentielles et théorie de Hodge, Trav. Cours 24, 1–19 (1987)Google Scholar
  9. 9.
    Ceria, M., Mora, T.: Buchberger–Zacharias theory of multivariate Ore extensions. J. Pure Appl. Algebra 221(12), 2974–3026 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ceria, M., Mora, T.: Buchberger–Weispfenning theory for effective associative rings. J. Symb. Comput. 83, 112–146 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cheng, H., Labahn, G.: Output-sensitive modular algorithms for polynomial matrix normal forms. J. Symb. Comput. 42(7), 733–750 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-2: a computer algebra system for polynomial computations (2019).
  13. 13.
    Ebert, G.: Some comments on the modular approach to Gröbner-bases. SIGSAM Bull. 17(2), 28–32 (1983)CrossRefGoogle Scholar
  14. 14.
    García García, J.I., García Miranda, J., Lobillo, F.: Elimination orderings and localization in PBW algebras. Linear Algebra Appl. 430(8–9), 2133–2148 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    García Román, M., García Román, S.: Gröbner bases and syzygies on bimodules over PBW algebras. J. Symb. Comput. 40(3), 1039–1052 (2005)CrossRefGoogle Scholar
  16. 16.
    Greuel, G.-M., Levandovskyy, V., Motsak, O., Schönemann, H.: Plural. a singular 4-1-2 subsystem for computations with non-commutative polynomial algebras (2019).
  17. 17.
    Idrees, N., Pfister, G., Steidel, S.: Parallelization of modular algorithms. J. Symb. Comput. 46(6), 672–684 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kandri-Rody, A., Weispfenning, V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comput. 9(1), 1–26 (1990)CrossRefGoogle Scholar
  19. 19.
    Krause, G.R., Lenagan, T.H.: Growth of Algebras and Gelfand–Kirillov Dimension, Revised edn. American Mathematical Society, Providence (2000)zbMATHGoogle Scholar
  20. 20.
    Kredel, H.: Solvable Polynomial Rings. Shaker, Aachen (1993)zbMATHGoogle Scholar
  21. 21.
    Levandovskyy, V.: Non-commutative computer algebra for polynomial algebras: Gröbner bases, applications and implementation. Doctoral thesis, Universität Kaiserslautern (2005)Google Scholar
  22. 22.
    Levandovskyy, V.: PBW bases, non-degeneracy conditions and applications. In: Representations of Algebras and Related Topics. Proceedings from the 10th International Conference, ICRA X, Toronto, Canada, July 15–August 10, 2002. Dedicated to V. Dlab on the occasion of his 70th birthday, pp. 229–246. American Mathematical Society (AMS), Providence (2005)Google Scholar
  23. 23.
    Levandovskyy, V., Koutschan, C., Motsak, O.: On two-generated non-commutative algebras subject to the affine relation. In: Gerdt, V., Koepf, W., Mayr, E., Vorozhtsov, E. (eds.) Proceedings of CASC ’2011, Volume 6885 of LNCS, pp. 309–320. Springer, Berlin (2011)Google Scholar
  24. 24.
    Levandovskyy, V., Schönemann, H.: Plural: a computer algebra system for noncommutative polynomial algebras. In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, ISSAC 2003, Philadelphia, PA, USA, August 3–6, 2003, pp. 176–183. ACM Press, New York (2003)Google Scholar
  25. 25.
    Li, H.: Noncommutative Gröbner bases and filtered-graded transfer. Lecture Notes in Mathematics, vol. 1795. Springer, Berlin (2002)Google Scholar
  26. 26.
    Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theor. Comput. Sci. 134(1), 131–173 (1994)CrossRefGoogle Scholar
  27. 27.
    Noro, M.: An efficient modular algorithm for computing the global \(b\)-function. In: Cohen, A.M., Gao, X.-S., Takayama, N. (eds.) Mathematical Software (Beijing, 2002), pp. 147–157. World Sci. Publ, River Edge (2002)CrossRefGoogle Scholar
  28. 28.
    Noro, M., Yokoyama, K.: Usage of modular techniques for efficient computation of ideal operations. Math. Comput. Sci. 12(1), 1–32 (2018) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pritchard, F.L.: The ideal membership problem in non-commutative polynomial rings. J. Symb. Comput. 22(1), 27–48 (1996)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Reiffen, H.-J.: Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen. Math. Z. 101, 269–284 (1967)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Sabbah, C.: Proximité évanescente I. La structure polaire d’un D-Module. Compos. Math. 62(3), 283–328 (1987)zbMATHGoogle Scholar
  32. 32.
    Takayama, N.: Gröbner basis and the problem of contiguous relations. Japan J. Appl. Math. 6(1), 147–160 (1989)MathSciNetCrossRefGoogle Scholar
  33. 33.
    The SymbolicData Project (2019).
  34. 34.
    Weispfenning, V.: Finite Gröbner bases in non-noetherian skew polynomial rings. In: Proceedings of ISSAC’92, pp. 329–334. ACM Press, New York (1992)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wolfram Decker
    • 1
  • Christian Eder
    • 1
  • Viktor Levandovskyy
    • 2
    Email author
  • Sharwan K. Tiwari
    • 1
  1. 1.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Lehrstuhl D für MathematikRWTH Aachen UniversityAachenGermany

Personalised recommendations