Complex Analysis and Operator Theory

, Volume 13, Issue 8, pp 3853–3870 | Cite as

A Class of Hausdorff–Berezin Operators on the Unit Disc

  • Alexey KarapetyantsEmail author
  • Stefan Samko
  • Kehe Zhu


We introduce and study a class of Hausdorff–Berezin operators on the unit disc based on Haar measure (that is, the Möbius invariant area measure). We discuss certain algebraic properties of these operators and obtain boundedness conditions for them. We also reformulate the obtained results in terms of ordinary area measure.


Hausdorff operators Berezin transform Bergman kernel Invariant kernel Haar measure Möbius group 

Mathematics Subject Classification

47G10 47B38 46E30 



Alexey Karapetyants acknowledges the support of the Fulbright Research Scholarship program and the warm hospitality of the Mathematics Department at the State University of New York at Albany during the time when this research was completed. Funding was provided by J. William Fulbright Research Scholarship Program (Grant No. PS00267032). Alexey Karapetyants and Stefan Samko are partially supported by the Russian Foundation for Fundamental Research (Grant Number 18-01-00094). Kehe Zhu is supported by the National Natural Science Foundation of China (Grant Number 11720101003) and by STU Scientific Research Foundation for Talents (Grant No. NTF17009).


  1. 1.
    Aizenberg, L., Liflyand, E.: Hardy spaces in Reinhardt domains, and Hausdorff operators. Illinois J. Math. 53, 1033–1049 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aizenberg, L., Liflyand, E., Vidras, A.: Hausdorff operators in Hardy spaces on Cartan type domains in \({\mathbb{C}}^n\), complex analysis and dynamical systems VI. Part 2, 27–46, Contemp. Math., 667, Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI (2016)Google Scholar
  3. 3.
    Brown, G., Móricz, F.: Multivariate Hausdorff operators on the spaces \(L^p({{\cal{R}}}^n)\). J. Math. Anal. Appl. 271, 443–454 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, J., Fan, D., Wang, S.: Hausdorff operators on Euclidean spaces. Appl. Math. J. Chin Univ. (Ser. B) (4) 28, 548–564 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Galanopoulos, P., Papadimitrakis, M.: Hausdorff and quasi-Hausdorff matrices on spaces of analytic functions. Can. J. Math. 58, 548–579 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  7. 7.
    Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Springer, New York (2000)CrossRefGoogle Scholar
  8. 8.
    Karapetiants, N.K., Samko, S.G.: Equations with an Involutive Operators and Their Applications. Rostov University Publishing House, Rostov-on-Don (1988). (in Russian)zbMATHGoogle Scholar
  9. 9.
    Karapetiants, N.K., Samko, S.G.: Equations with an Involutive Operators and Their Applications. Birkhauser, Boston (2001)CrossRefGoogle Scholar
  10. 10.
    Karapetiants, N.K., Samko, S.G.: Multi-dimensional integral operators with homogeneous kernels. Fract. Calc. Appl. Anal. 2, 67–96 (1999)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Lerner, A., Liflyand, E.: Multidimensional Hausdorff operator on the real Hardy space. J. Aust. Math. Soc. 83, 79–86 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Liflyand, E.: Hausdorff operators on Hardy spaces. Eurasian Math. J. 4, 101–141 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Liflyand, E., Móricz, F.: The Hausdorff operator is bounded on the real Hardy space \(H^{1} ({{\mathbb{R}}})\). Proc. Am. Math. Soc. 128, 1391–1396 (2000)CrossRefGoogle Scholar
  14. 14.
    Liflyand, E.: Boundedness of multidimensional Hausdorff operators on \(H^1({\mathbb{R}}^n)\). Acta Sci. Math. (Szeged) 74, 845–851 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Liflyand, E., Miyachi, A.: Boundedness of the Hausdorff operators in \(H^p\) spaces, \(0<p<1\). Studia Math. 194(3), 279–292 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mateljevic, M., Pavlovic, M.: An extension of the Forelli–Rudin projection theorem. Proc. Edinburgh Math. Soc. 36, 375–389 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhu, K.: On certain unitary operators and composition operators. Proc. Symp. Pure Math. 51, 371–385 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Springer, New York (2004)Google Scholar
  19. 19.
    Zhu, K.: Operator Theory in Function Spaces, AMS Mathematical Surveys and Monographs, Vol. 138 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsSUNYAlbanyUSA
  2. 2.Department of Mathematics and Regional Mathematical CenterSouthern Federal UniversityRostov-on-DonRussia
  3. 3.University of AlgarveFaroPortugal
  4. 4.Department of MathematicsShantou UniversityShantouChina

Personalised recommendations