Advertisement

The Forward Order Laws for \(\{1,2,3\}\)- and \(\{1,2,4\}\)-Inverses of Multiple Matrix Products

  • Zhiping XiongEmail author
  • Zhongshan Liu
Article
  • 10 Downloads

Abstract

The forward order law for generalized inverse often appears in linear algebra problems of some applied fields, which have attracted considerable attention and some interesting results have been obtained. In this paper, using the extremal ranks of the generalized Schur complement, we obtain the necessary and sufficient conditions for the forward order laws
$$\begin{aligned} A_1\{1,2,3\}A_2\{1,2,3\}\cdots A_n\{1,2,3\}\subseteq (A_1A_2\cdots A_n)\{1,2,3\} \end{aligned}$$
and
$$\begin{aligned} A_1\{1,2,4\}A_2\{1,2,4\}\cdots A_n\{1,2,4\}\subseteq (A_1A_2\cdots A_n)\{1,2,4\}. \end{aligned}$$

Keywords

Forward order law Generalized inverse Maximal and minimal ranks Matrix product Generalized Schur complement 

Mathematics Subject Classification

47A05 15A09 15A24 

Notes

Acknowledgements

The authors would like to thank Professor Daniel Aron Alpay and the anonymous referees for their very detailed comments and constructive suggestions, which greatly improved the presentation of this paper.

References

  1. 1.
    Ben-Israel, A., Greville, T.N.E.: Generalized Inverse: Theory and Applications, 2nd edn. Springer, New York (2003)zbMATHGoogle Scholar
  2. 2.
    Cvetković-IIić, D., Harte, R.: Reverse order laws in \(C^*\)-algebras. Linear Algebra Appl. 434, 1388–1394 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Campbell, S.L., Meyer, C.D.: Generalized Inverse of Linear Transformations. Dover, New York (1979)zbMATHGoogle Scholar
  4. 4.
    Depierro, A.R., Wei, M.: Reverse order laws for recive generalized inverse of products of matrices. Linear Algebra Appl. 277, 299–311 (1996)CrossRefGoogle Scholar
  5. 5.
    Djordjevic, D.S.: Futher results on the reverse order law for generalized inverses. SIAM J. Matrix. Anal. Appl. 29, 1242–1246 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Greville, T.N.E.: Note on the generalized inverses of a matrix products. SIAM Rev. 8, 518–521 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hartwing, R.E.: The reverse order law revisited. Linear Algebra Appl. 76, 241–246 (1986)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liu, D., Yan, H.: The reverse order law for \(\{1,3,4\}\)-inverse of the product of two matrices. Appl. Math. Comput. 215, 4293–4303 (2010)MathSciNetGoogle Scholar
  9. 9.
    Liu, X.J., Huang, S., Cvetkovic-Ilic, D.S.: Mixed-tipe reverse-order law for \(\{1,3\}\)-inverses over Hilbert spaces. Appl. Math. Comput. 218, 8570–8577 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Liu, Q., Wei, M.: Reverse order law for least squares g-inverse of multiple matrix products. Linear Multilinear Algebra 56, 491–506 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Liu, S.Z., Xiong, Z.: The forward order laws for \(\{1,2,3\}-\) ans \(\{1,2,4\}\)-inverses of three matrix products. Filomat 32, 589–598 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Marsaglia, G., Tyan, G.P.H.S.: Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra 2, 269–292 (1974)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Penrose, R.: A generalized for matrix. Proc. Camb. Philos Soc. 51, 406–413 (1955)CrossRefzbMATHGoogle Scholar
  14. 14.
    Rao, C.R., Mitra, S.K.: Generalized inverse of Matrices and Its Applications. Wiley, New York (1971)zbMATHGoogle Scholar
  15. 15.
    Stanimirovic, P., Tasic, M.: Computing generalized inverses using Lu factorization of matrix product. Int. J. Comp. Math. 85, 1865–1878 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sun, W., Wei, Y.: Inverse order rule for weighted generalized inverse. SIAM J. Matrix Anal. Appl. 19, 772–775 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tian, Y.: The Moore–Penrose inverse order of a triple matrix product. Math. Pract. Theory. 1, 64–70 (1992)zbMATHGoogle Scholar
  18. 18.
    Tian, Y.: Reverse order laws for generalized inverse of multiple materix products. Linear Algebra Appl. 211, 85–100 (1994)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tian, Y.: More on maximal and minimal ranks of Schur complements with applications. Appl. Math. Comput. 152, 675–692 (2004)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Wang, G., Wei, Y., Qiao, S.: Generalized inverses: Theory and Computations. Science Press, Beijing (2004)zbMATHGoogle Scholar
  21. 21.
    Wei, M.: Equivalent conditions for generalized inverses of products. Linear Algebra Appl. 266, 347–363 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wei, M.: Reverse order laws for generalized inverse of multiple matrix products. Linear Algebra Appl. 293, 273–288 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wei, M., Guo, W.: Reverse order laws for lest squares \(g\)-inverses and minimum-norm \(g\)-inverses of products of two matrices. Linear Algebra Appl. 342, 117–132 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, G., Zheng, B.: The reverse order law for the generalized inverse \(A_{T, S}^{(2)}\). Appl. Math. Comput. 157, 295–305 (2004)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Xiong, Z., Qin, Y.: A note on the reverse order law for reflexive generalized inverse of multiple matrix products. Appl. Math. Comput. 219, 4255–4265 (2013)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Xiong, Z., Zheng, B.: Forward order law for the generalized inverses of multiple matrix products. J. Appl. Math. Comput. 25(1–2), 415–424 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Xiong, Z., Zheng, B.: The reverse order laws for \(\{1, 2, 3\}\)-, \(\{1, 2, 4\}\)-inverses of a two-matrix products. Appl. Math Lett. 21, 649–655 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zheng, B., Xiong, Z.: The reverse order laws for \(\{1, 2, 3\}\)-, \(\{1, 2, 4\}\)-inverses of multiple matrix products. Linear Multilinear Algebra 58, 765–782 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematics and Computational ScienceWuyi UniversityJiangmenPeople’s Republic of China

Personalised recommendations