Wick Ordering Associated with the (pq)-Gaussian White Noise Process

  • Anis RiahiEmail author


In this paper the quantum decomposition associated with the noncommutative analog of Gaussian white noise processes for the relation of the Chakrabarti–Jagannathan deformed quantum oscillator algebra is investigated. The constructed decomposition with the (pq)-deformed commutation relations of the pointwise creation and annihilation operators is used to solve the problem of normal wick ordering for white noise operators on the (pq)-deformed Fock space.


Chakrabarti–Jagannathan deformed quantum oscillator algebra (p, q)-deformed Fock space Quantum decomposition Wick ordering White noise operators 

Mathematics Subject Classification

Primary 99Z99 Secondary 00A00 



  1. 1.
    Accardi, L., Bożejko, M.: Interacting Fock space and Gaussianization of probability measures. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1, 663–670 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Accardi, L., Kuo, H.-H., Stan, A.I.: Characterization of probability measures through the canonically associated interacting Fock spaces. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7(4), 485–505 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Accardi, L., Rebei, H., Riahi, A.: The quantum decomposition associated with the Lvy white noise processes without moments. Probab. Math. Stat. 34(2), 337–362 (2014)zbMATHGoogle Scholar
  4. 4.
    Berezansky, Y.M.: Commutative Jacobi fields in Fock space. Integral Equ. Oper. Theory 30, 163–190 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berezansky, Y.M.: Expansions in Eigenfunctions of Selfadjoint Operators. American Mathematical Society, Providence (1968)CrossRefGoogle Scholar
  6. 6.
    Blitvi’c, N.: The \((q, t)\)-Gaussian process. J. Funct. Anal. 263, 3270–3305 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berezansky, Y.M., Kondratiev, Y.G.: Spectral Methods in Infinite Dimensional Analysis, vol. 1. Kluwer Academic Publishers, Dordrecht (1995)CrossRefGoogle Scholar
  8. 8.
    Berezansky, Y.M., Koshmanenko, V.D.: An asymptotic field theory in terms of operator Jacobian matrices. Sov. Phys. Dokl. 14, 1064–1066 (1969–1970)Google Scholar
  9. 9.
    Bożejko, M., Kümmerer, B., Speicher, R.: \(q\)-Gaussian processes: non-commutative and classical aspects. Commun. Math. Phys. 185, 129–154 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Barhoumi, A., Ouerdiane, H., Riahi, A.: On spectral approach to Pascal white noise functionals. In: Quantum Probability and Related Topics, QP-PQ: Quantum Probability White Noise Analysis, vol. 27, pp. 68–89. World Scientific Publishing, Hackensack (2011)Google Scholar
  11. 11.
    Blasiak, P., Penson, K.A., Solomon, A.I.: The boson normal ordering problem and generalized Bell numbers. Ann. Comb. 7, 127–139 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bożejko, M., Speicher, R.: An example of a generalized Brownian motion. Commun. Math. Phys. 137, 519–531 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bożejko, M., Speicher, R.: An example of a generalized Brownian motion II. Quantum Probab. Relat. Top. 7, 219–236 (1992)zbMATHGoogle Scholar
  14. 14.
    Chakrabarti, R., Jagannathan, R.: A \((p, q)\)-oscillator realization of two-parameter quantum algebras. J. Phys. A 24(13), L711 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Floreanini, R., Lapointe, L., Vinet, L.: A note on \((p, q)\)-oscillators and bibasic hypergeometric functions. J. Phys. A 26, L611–L614 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ji, U.C., Lytvynov, E.: Wick calculus for noncommutative white noise corresponding to q-deformed commutation relations. Complex Anal. Oper. Theory 12(7), 1497–1517 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Katriel, J.: Combinatorial aspects of boson algebra. Lett. Nuovo Cimento 10, 565–567 (1974)CrossRefGoogle Scholar
  18. 18.
    Katriel, J.: Normal ordering formulae for some boson operators. J. Phys. A : Math. Gen. 16, 4171–4173 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lytvynov, E.W.: Multiple Wiener integrals and non-Gaussian white noises: a Jacobi field approach. Methods Funct. Anal. Topol. 1(1), 61–85 (1995)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Mikhailov, V.V.: Normal ordering and generalized Stirling numbers. J. Phys. A : Math. Gen. 18, 231–235 (1985)CrossRefzbMATHGoogle Scholar
  21. 21.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)zbMATHGoogle Scholar
  22. 22.
    Sahai, V., Yadav, S.: Representations of two parameter quantum algebras and \((p, q)\)-special functions. J. Math. Anal. Appl. 335, 268–279 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Nabeul Preparatory Institute for Engineering StudiesCarthage UniversityNabeulTunisia

Personalised recommendations