Complex Analysis and Operator Theory

, Volume 13, Issue 2, pp 405–429 | Cite as

Skew Carleson Measures in Strongly Pseudoconvex Domains

  • Marco Abate
  • Jasmin RaissyEmail author


Given a bounded strongly pseudoconvex domain D in \(\mathbb {C}^n\) with smooth boundary, we give a characterization through products of functions in weighted Bergman spaces of \((\lambda ,\gamma )\)-skew Carleson measures on D, with \(\lambda >0\) and \(\gamma >1-\frac{1}{n+1}\).


Carleson measure Toeplitz operator Strongly pseudoconvex domain Weighted Bergman space 

Mathematics Subject Classification

Primary 32A36 Secondary 32A25 32Q45 32T15 46E22 46E15 47B35 



We wish to thank the anonymous referee for her/his useful comments.


  1. 1.
    Abate, M.: Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Cosenza (1989).
  2. 2.
    Abate, M.: Angular derivatives in several complex variables. In: Zaitsev, D., Zampieri, G. (eds.) Real Methods in Complex and CR Geometry. Lecture Notes in Mathematics 1848, pp. 1–47. Springer, Berlin (2004)Google Scholar
  3. 3.
    Abate, M., Raissy, J., Saracco, A.: Toeplitz operators and Carleson measures in strongly pseudoconvex domains. J. Funct. Anal. 263(11), 3449–3491 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Abate, M., Saracco, A.: Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains. J. Lond. Math. Soc. 83, 587–605 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Amar, E.: A subordination principle. Applications. North West. Eur. J. Math. 1, 23–45 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Carleson, L.: Interpolations by bounded analytic functions and the corona problem. Ann. Math. 76, 547–559 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cima, J.A.: Composition operators between Bergman spaces on convex domains in \({\mathbb{C}}^n\). J. Oper. Theory 33, 363–369 (1995)zbMATHGoogle Scholar
  8. 8.
    Cima, J.A., Wogen, W.R.: A Carleson measure theorem for the Bergman space on the ball. J. Oper. Theory 7, 157–165 (1982)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Duren, P.L.: Extension of a theorem of Carleson. Bull. Am. Math. Soc. 75, 143–146 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hastings, W.W.: A Carleson measure theorem for Bergman spaces. Proc. Am. Math. Soc. 52, 237–241 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hörmander, L.: \(L^2\)-estimates and existence theorems for the \({\bar{\partial }}\)-operator. Acta Math. 113, 89–152 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North Holland, Amsterdam (1973)zbMATHGoogle Scholar
  13. 13.
    Hu, Z., Lv, X.: Carleson measures and balayage for Bergman spaces of strongly pseudoconvex domains. Math. Nachr. 289(10), 1237–1254 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jarnicki, M., Pflug, P.: Invariant Distances and Metrics in Complex Analysis. Walter de Gruyter & co, Berlin (1993)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kobayashi, S.: Hyperbolic Complex Spaces. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Krantz, S.: Function Theory of Several Complex Variables. Wiley, New York (1981)Google Scholar
  17. 17.
    Li, H.: BMO, VMO and Hankel operators on the Bergman space of strictly pseudoconvex domains. J. Funct. Anal. 106, 375–408 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Luecking, D.H.: A technique for characterizing Carleson measures on Bergman spaces. Proc. Am. Math. Soc. 87, 656–660 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Luecking, D.H.: Embedding theorems for spaces of analytic functions via Khinchine’s inequality. Mich. Math. J. 40, 333–358 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Oleinik, V.L.: Embeddings theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 9, 228–243 (1978)CrossRefzbMATHGoogle Scholar
  21. 21.
    Oleinik, V.L., Pavlov, B.S.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 2, 135–142 (1974)CrossRefzbMATHGoogle Scholar
  22. 22.
    Pau, J., Zhao, R.: Carleson measures and Toeplitz operators for weighted Bergman spaces on the unit ball. Mich. Math. J. 64(4), 759–796 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Range, R.M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Springer, Berlin (1986)CrossRefzbMATHGoogle Scholar
  24. 24.
    Zhu, K.: Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains. J. Oper. Theory 20, 329–357 (1988)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di PisaPisaItaly
  2. 2.Institut de Mathématiques de Toulouse, UMR5219, CNRS, UPS IMTUniversité de ToulouseToulouse Cedex 9France

Personalised recommendations