Complex Analysis and Operator Theory

, Volume 12, Issue 7, pp 1739–1765 | Cite as

Extremal Unital Completely Positive Maps and Their Symmetries

  • Anilesh MohariEmail author


We consider the set \(P_1({\mathcal A},{\mathcal M})\) (respectively \(CP_1({\mathcal A},{\mathcal M})\) of unital positive (completely) maps from a \(C^*\) algebra \({\mathcal A}\) to a von-Neumann sub-algebra \({\mathcal M}\) of \({\mathcal B}({\mathcal H})\), the algebra of bounded linear operators on a Hilbert space \({\mathcal H}\). We study the extreme points of the convex set \(P_1({\mathcal A},{\mathcal M})\) (\(CP_1({\mathcal A},{\mathcal M})\)) via their canonical lifting to the convex set of (unital) positive (completely) normal maps from \(\hat{{\mathcal A}}\) to \({\mathcal M}\), where \({\mathcal A}^{**}\) is the universal enveloping von-Neumann algebra over \({\mathcal A}\). If \({\mathcal A}={\mathcal M}\) then a (completely) positive map \(\tau \) admits a unique decomposition into a sum of a normal and a singular (completely) positive maps. Furthermore, if \({\mathcal M}\) is a factor then a unital complete positive map is a unique convex combination of unital normal and singular completely positive maps. We also used a duality argument to find a criteria for an element in the convex set of unital completely positive maps with a given faithful normal invariant state on \({\mathcal M}\) to be extremal. In our investigation, gauge symmetry in the minimal Stinespring representation of a completely positive map and Kadison theorem on order isomorphism played an important role.


Operator system Arveson–Hahn–Banach extension theorem Complete order isomorphism 

Mathematics Subject Classification



  1. 1.
    Arveson, W.: Sub-algebras of \(C^*\)-algebras. Acta Math. 123, 141–224 (1969)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I,II, Springer, Berlin (1981)CrossRefGoogle Scholar
  3. 3.
    Bratteli, O., Jorgensen, P.E.T., Kishimoto, A., Werner, R.F.: Pure states on \(\cal{O}_d\), J. Oper. Theory 43(1), 97–143 (2000)Google Scholar
  4. 4.
    Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hopenwasser, A., Moore, R.L., Paulsen, V.I.: \(C^*\)-extreme points. Trans. Am. Math. Soc. 266(1), 291–307 (1981)zbMATHGoogle Scholar
  6. 6.
    Kadison, R.V.: Isometries of operator algebras. Ann. Math. 54(2), 325–338 (1951)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kadison, R.V.: A generalized Schwarz inequality and algebraic invariants for operator algebras. Ann. Math. 2(56), 494–503 (1952)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kendall, D.G.: On infinite doubly stochastic matrices and Birkhoff’s problem, II. Lond. Math. Soc. J. 35, 81–84 (1960)CrossRefGoogle Scholar
  9. 9.
    König, D. : The theory of finite and infinite graphs, Täubner 1936, Birkhäser, Boston, p 327 (1990)CrossRefGoogle Scholar
  10. 10.
    Landau, L.J., Streater, R.F.: On Birkhoff theorem for doubly stochastic completely positive maps of matrix algebras. Linear Algebra Appl. 193, 107–127 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mendl, C.B., Wolf, M.M.: Unital quantum channel’s convex structure and revivals of Birkhoff’s theorem. Commun. Math. Phys. 289(3), 1057–1086 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mohari, A.: Pure inductive limit state and Kolmogorov property. II. J. Oper. Theory 72(2), 387–404 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mohari, A.: Translation invariant pure state on \(\otimes _{\mathbb{Z}}\!M_d(\mathbb{C})\) and Haag duality. Complex Anal. Oper. Theory 8(3), 745–789 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mohari, A.: Translation invariant pure state on \(\cal{B}=\otimes _{\mathbb{Z}}M_d(\mathbb{C})\) and its split property. J. Math. Phys. 56, 061701 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mohari, A.: Hann–Banach–Arveson extension theorem and Kadison isomorphism, arXiv:1304.6849 (2015)
  16. 16.
    Mohari, A.: G. Birkhoff problem in irreversible quantum dynamics, in preparation (2015)Google Scholar
  17. 17.
    Ohno, H.: Maximal rank of extremal marginal tracial states. J. Math. Phys. 51(9), 092101, 9 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ohya, M., Petz, D.: Quantum Entropy and Its Use. Text and Monograph in Physics. Springer, Berlin (1995)zbMATHGoogle Scholar
  19. 19.
    Paulsen, V.: Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advance Mathematics 78. Cambridge University Press, Cambridge (2002)Google Scholar
  20. 20.
    Paschke, W.L.: Inner product modules Over \(B^*\)-algebras. Trans. Am. Math. Soc. 182, 443–468 (1973)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Phelps, R.R.: Lectures on Choquet’s Theorem, Lecture notes in Mathematics 1757, Springer (2001)Google Scholar
  22. 22.
    Parthasarathy, K.R.: Extremal quantum states in coupled states in coupled systems. Ann. Inst. H. Poincaré 41, 257–268 (2005)CrossRefGoogle Scholar
  23. 23.
    Price, G.L., Sakai, S.: Extremal marginal tracial states in couple systems. Oper. Matrices 1, 153–163 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Raginsky, M.: Radon–Nikodym derivatives of quantum operations. J. Math. Phys. 44(11), 5003–5020 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Rudolph, O.: On extremal quantum states of composite systems with fixed marginals. J. Math. Phys. 45, 4035–4041 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Stinespring, W.F.: Positive functions on \(C^*\) algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Størmer, E.: Positive linear maps of operator algebras. Acta Math. 110, 233–278 (1963)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Takesaki, M.: Theory of Operator Algebras I. Springer, Berlin (2001)zbMATHGoogle Scholar
  29. 29.
    Tomiyama, J.: On the projection of norm one in W\(^*\)-algebras. Proc. Jpn. Acad. 33, 608–612 (1957)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tomiyama, J.: On the projection of norm one in W\(^*\)-algebras. II. Thoku. Math J. 10(2), 204–209 (1958)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tomiyama, J.: On the projection of norm one in W\(^*\)-algebras. III. Thoku Math. J. 11(2), 125–129 (1959)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tsui, S.K.: Completely positive module maps and completely positive extreme maps. Proc. Am. Math. Soc. 124(2), 437–445 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations