Advertisement

Complex Analysis and Operator Theory

, Volume 13, Issue 2, pp 341–349 | Cite as

Weighted Inductive Limits of Holomorphic Functions with o-Growth Condition

  • Alexander V. AbaninEmail author
  • Pham Trong Tien
Article
  • 45 Downloads

Abstract

We study topological properties of weighted (LB)-spaces of holomorphic functions on open sets with o-growth condition. We show that such spaces are semi-Montel if and only if they are (DFS). We also establish that, for a wide family of open sets, some important topological properties of such holomorphic spaces are always equivalent and necessary for a space to be equal algebraically to its projective hull. This means, in particular, that for such open sets these spaces behave in a very similar way as the corresponding spaces of continuous functions.

Keywords

Weighted function spaces Weighted inductive limits Growth conditions 

Mathematics Subject Classification

Primary 46E10 30H05 46A13 

Notes

Acknowledgements

This note was written when the second author visited the Department of Applied Mathematics at the University of Washington. He would like to thank the Department and Professor Aleksandr Aravkin for the hospitality.

References

  1. 1.
    Abanin, A.V., Tien, P.T.: Painlevè null sets, dimensionand compact embedding of weighted holomorphic spaces. Studia Math. 213, 169–187 (2012). See also: Abanin, A.V., Tien, P.T. Erratum: Painlevè null sets, dimension andcompact embedding of weighted holomorphic spaces. Studia Math. 213(2), 169–187 (2012)Google Scholar
  2. 2.
    Abanin, A.V., Tien, P.T.: The algebraic equalities and their topological consequences in weighted spaces. J. Math. Anal. Appl. 422, 435–445 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bierstedt, K.D.: A survey of some results and open problems in weighted inductive limits and projective description for spaces of holomorphic functions. Bull. Soc. R. Sci. Liége 70, 167–182 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bierstedt, K.D., Bonet, J.: Projective description of weighted (LF)-spaces of holomorphic functions on the disc. Proc. Edinb. Math. Soc. 46, 435–450 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bierstedt, K.D., Bonet, J.: Weighted (LB)-spaces of holomorphic functions: \(\cal{V} H(G)=\cal{V}_0 H(G)\) and completeness of \(\cal{V}_0 H(G)\). J. Math. Anal. Appl. 323, 747–767 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on balanced domains. Michigan Math. J. 40, 271–297 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Studia Math. 127, 137–168 (1998)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bierstedt, K.D., Bonet, J., Taskinen, J.: Weighted inductive limits of spaces of entire functions. Monatsh. Math. 154, 103–120 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bierstedt, K.D., Meise, R.: Bemerkungen über die approximationseigenschaft lokalkonvexer Funktionenräume. Math. Ann. 209, 99–107 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bierstedt, K.D., Meise, R.: Weighted inductive limits and their projective descriptions. In: Proc. Silivri Conference in Functional Analysis 1985, Doǧa Tr. J. Math. vol. 10, pp. 54–82. (1986)Google Scholar
  11. 11.
    Bierstedt, K.D., Meise, R., Summers, W.H.: A projective description of weighted inductive limits. Trans. Am. Math. Soc. 272, 107–160 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bonet, J., Englis, M., Taskinen, J.: Weighted \(L^{\infty }\)-estimates for Bergman projections. Studia Math. 171, 67–92 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Floret, K.: Folgenretraktive Sequenze lokalkonvexer Räume. J. Reine Angew. Math. 259, 65–85 (1973)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Melikhov, S.N.: Absolutely convergent series in the canonical inductive limits. Math. Notes. 39, 475–480 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Neus, H.: Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen. Manuscr. Math. 25, 135–145 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Southern Mathematical InstituteVladikavkazRussian Federation
  2. 2.Southern Federal UniversityRostov-on-DonRussian Federation
  3. 3.Hanoi University of Science, Vietnam National UniversityHanoiVietnam

Personalised recommendations