Complex Analysis and Operator Theory

, Volume 13, Issue 3, pp 1431–1440 | Cite as

Sobolev-Like Hilbert Spaces Induced by Elliptic Operators

  • Tetiana Kasirenko
  • Vladimir Mikhailets
  • Aleksandr MurachEmail author


We investigate properties of function spaces induced by the inner product Sobolev spaces \(H^{s}(\Omega )\) over a bounded Euclidean domain \(\Omega \) and by an elliptic differential operator A on \({\overline{\Omega }}\). The domain and the coefficients of A are of the class \(C^{\infty }\). These spaces consist of all distributions \(u\in H^{s}(\Omega )\) such that \(Au\in H^{\lambda }(\Omega )\) and are endowed with the corresponding graph norm, with \(s,\lambda \in {\mathbb {R}}\). We prove an interpolation formula for these spaces and discuss their application to elliptic boundary-value problems.


Sobolev space Elliptic operator Complex interpolation Elliptic problem Fredholm operator 

Mathematics Subject Classification

Primary 46E35 35J30 Secondary 35J40 



  1. 1.
    Agranovich, M.S.: Elliptic boundary problems. In: Agranovich, M.S., Egorov, Y.V., Shubin, M.A. (eds.) Partial Differential Equations IX. Encyclopaedia of Mathematical Sciences, vol. 79, pp. 1–144. Springer, Berlin (1997)CrossRefGoogle Scholar
  2. 2.
    Anop, A.V., Kasirenko, T.M., Murach, O.O.: Irregular elliptic boundary-value problems and Hörmander spaces. Ukr. Math. J. 70, 341–361 (2018)CrossRefGoogle Scholar
  3. 3.
    Birman, M.Š.: Characterization of elliptic differential operators with the maximal domain of definition. Vestnik Leningrad. Univ. Ser. Math. Mech. Astr. 19(4), 177–183 (1957). (Russian)zbMATHGoogle Scholar
  4. 4.
    Geymonat, G.: Sul problema di Dirichlet per le equazoni lineari ellittiche. Ann. Sci. Norm. Sup. Pisa 16, 225–284 (1962)zbMATHGoogle Scholar
  5. 5.
    Hörmander, L.: On the theory of general partial differential equations. Acta Math. 94, 161–248 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hörmander, L.: Linear Partial Differential Operators. Springer, Berlin (1963)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kalton, N., Mayboroda, S., Mitrea, M.: Interpolation of Hardy–Sobolev–Besov–Triebel–Lizorkin spaces and applications to problems in partial differential equations. In: De Carli, L., Milman, M. (eds.) Interpolation Theory and Applications. Contemporary Mathematics, vol. 445, pp. 121–177. American Mathematical Society, Providence, RI (2007)CrossRefGoogle Scholar
  8. 8.
    Ladyzenskaya, O.A.: On the closure of the elliptic operator. Doklady Akad. Nauk SSSR (N.S.) 79, 723–725 (1951). (Russian)MathSciNetGoogle Scholar
  9. 9.
    Lions, J.-L., Magenes, E.: Problémes aux limites non homogénes, II. Ann. Inst. Fourier (Grenoble) 11, 137–178 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lions, J.-L., Magenes, E.: Problémes aux limites non homogénes, V. Ann. Sci. Norm. Sup. Pisa 16, 1–44 (1962)zbMATHGoogle Scholar
  11. 11.
    Lions, J.-L., Magenes, E.: Problémes aux limites non homogénes, VI. J. d’Analyse Math. 11, 165–188 (1963)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lions, J.-L., Magenes, E.: Problémes aux limites non homogénes. VII. Ann. Mat. Pura Appl. (4) 63, 201–224 (1963)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lions, J.-L., Magenes, E.: Non-homogeneous Boundary-Value Problems and Applications, vol. I. Springer, New York (1972)CrossRefzbMATHGoogle Scholar
  14. 14.
    Magenes, E. Spazi di interpolazione ed equazioni a derivate parziali. In: Atti VII Congr. Un. Mat. Italiana (Genoa, 1963), pp. 134–197. Edizioni Cremonese, Rome (1965)Google Scholar
  15. 15.
    Mikhailets, V.A., Murach, A.A.: A regular elliptic boundary-value problem for a homogeneous equation in a two-sided refined scale of spaces. Ukr. Math. J. 58, 1748–1767 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mikhailets, V.A., Murach, A.A.: Elliptic problems and Hörmander spaces. In: Modern analysis and applications. The Mark Krein Centenary Conference. Vol. 2: Differential operators and mechanics, pp. 447–470, Oper. Theory Adv. Appl. 191. Birkhäser Verlag, Basel (2009)Google Scholar
  17. 17.
    Mikhailets, V.A., Murach, A.A.: The refined Sobolev scale, interpolation, and elliptic problems. Banach J. Math. Anal. 6(2), 211–281 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mikhailets, V.A., Murach, A.A.: Hörmander Spaces, Interpolation, and Elliptic Problems. De Gruyter, Berlin (2014)CrossRefzbMATHGoogle Scholar
  19. 19.
    Murach, A.A.: Extension of some Lions–Magenes theorems. Methods Funct. Anal. Topology 15, 152–167 (2009)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Peetre, J.: Another approach to elliptic boundary-value problems. Comm. Pure Appl. Math. 14, 711–731 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tetiana Kasirenko
    • 1
  • Vladimir Mikhailets
    • 1
  • Aleksandr Murach
    • 1
    Email author
  1. 1.Institute of Mathematics of National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations