Complex Analysis and Operator Theory

, Volume 13, Issue 3, pp 1377–1399 | Cite as

On a Nonlocal Fractional p(., .)-Laplacian Problem with Competing Nonlinearities

  • K. B. Ali
  • M. Hsini
  • K. Kefi
  • N. T. ChungEmail author


The aim of this paper is to study the existence of nontrivial weak solutions for the problem
$$\begin{aligned} \left\{ \begin{array}{ll} M\left( \int _{\Omega \times \Omega }\frac{|u(x)-u(y)|^{p(x,y)}}{p(x,y)|x-y|^{N+p(x,y)s}}dxdy\right) (\Delta )^s_{p(x,.)}u(x)\\ \quad = \lambda f(x,u) - |u(x)|^{q(x)-2}u(x)\quad \hbox {in}~\Omega , \\ u = 0\quad \hbox {in}~\partial \Omega , \end{array} \right. \end{aligned}$$
where \(\Omega \subset \mathbb R^N\), \(N\ge 2\) is a bounded smooth domain, M and f are two continuous functions and \((\Delta )^s_{p(.,.)}\) is the fractional p(., .)-Laplacian while \(\lambda \) is a positive parameter and \(0<s<1\). Using variational techniques combined with the theory of the generalized Lebesgue Sobolev spaces, we prove some existence and multiplicity results for the problem in an appropriate space of functions.


\(p(., .)\)-Fractional Laplacian Kirchhoff type problems Variable exponents Variational methods 

Mathematics Subject Classification

35D05 35J60 35J65 35D30 35J58 



The authors would like to thank the referees for their suggestions and helpful comments which improved the presentation of the original manuscript. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.02-2017.04.


  1. 1.
    Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical points theory and applications. J. Funct. Anal. 14, 349–381 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52(1), 19–36 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Autuori, G., Pucci, P.: Kirchhoff systems with nonlinear source and boundary damping terms. Commun. Pure Appl. Anal. 9, 1161–1188 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bahrouni, A., Radulescu, V.D.: On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete Contin. Dyn. Syst. Ser. S 11(3), 379–389 (2018)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Barrios, B., Colorado, E., De Pablo, A., Sanchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252, 6133–6162 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ben Ali, K., Ghanmi, A., Kefi, K.: Minimax method involving singular \(p(x)\)-Kirchhoff equation. J. Math. Phys. 58, 111–505 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berestycki, H., Brezis, H.: On a free boundary problem arising in plasma physics. Nonlinear Anal. (TMA) 4(3), 415–436 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, H., Hajaiej, H., Wang, Y.: On a class of semilinear fractional elliptic equations involving outside Dirac data. Nonlinear Anal. (TMA) 125, 639–658 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, C.Y., Kuo, Y.C., Wu, T.F.: The Nahari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, Y., Levine, S., Ran, R.: Variable exponent linear growth functionals in image restoration. SIAM J. Appl. 66, 1383–1406 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Finance Mathematical Series. Chapman and Hall/CRC, Boca Raton (2004)zbMATHGoogle Scholar
  13. 13.
    Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2, 193–222 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dai, G.: Three solutions for a nonlocal Dirichlet boundary value problem involving the \(p(x)\)-Laplacian. Appl. Anal. 92, 191–210 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Berlin (2011)Google Scholar
  16. 16.
    Edmunds, D., Rakosnik, J.: Sobolev embeddings with variable exponent. Stud. Math. 143, 267–293 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fan, X.L., Zhao, D.: On the spaces \( L_{p(x)}(\Omega )\) and \(W^{k, m(x)}(\Omega )\). J. Math. Anal. Appl. 263(2), 424–446 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fan, X.L., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces \(W^{k, p(x)}(\Omega )\). J. Math. Anal. Appl. 262, 749–760 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ghanmi, A.: Nontrivial solutions for Kirchhoff-type problems involving the \(p(x)\)-Laplace operator. Rocky Mt. J. Math. 48(4), 1145–1158 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ghanmi, A., Saoudi, K.: The Nehari manifold for singular elliptic equation involving the fractional Laplace operator. Fract. Differ. Calc. 6(2), 201–217 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kaufmann, U., Rossi, J.D., Vidal, R.: Fractional Sobolev spaces with variable exponents and \(p(x)\)-Laplacian. Electron. J. Qual. Theory Differ. Equ. 2017(76), 1–10 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, Q., Yang, Z., Feng, Z.: Multiple solutions of a \(p\)-Kirchhoff with singular and critical nonlinearities. Electron. J. Differ. Equ. 84, 1–14 (2017)MathSciNetGoogle Scholar
  23. 23.
    Liao, J., Zhang, P.: Existence and nonexistence of solutions of a singular semilinear elliptic problem. J. Math. (Wuhan) 31, 777–784 (2011)MathSciNetGoogle Scholar
  24. 24.
    Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: Proceedings of International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro 1977 (de la Penha, Medeiros, Eds.), Math. Stud., North Holland, vol. 30, pp. 284–346 (1978)Google Scholar
  25. 25.
    Liu, D.: On a \(p\)-Kirchhoff equation via fountain theorem and dual fountain theorem. Nonlinear Anal. (TMA) 72, 302–308 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mosconi, S., Perera, K., Squassina, M., Yang, Y.: A Brezis-Nirenberg result for the fractional \(p\)-Laplacian. Calc. Var. Partial Differ. Equ. 55, 105 (2016)CrossRefzbMATHGoogle Scholar
  27. 27.
    Mukherjee, T., Sreenadh, K.: Critical growth fractional elliptic problem with singular nonlinearities. Electron. J. Differ. Equ. 54, 1–23 (2016)zbMATHGoogle Scholar
  28. 28.
    Mukherjee, T., Sreenadh, K.: On Dirichlet problem for fractional \(p\)-Laplacian with singular nonlinearity. Adv. Nonlinear Anal.
  29. 29.
    Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)zbMATHGoogle Scholar
  30. 30.
    Simon, J.: Régularité de la solution d’une équation linéaire dans \({R}^N\), Journées d’Analyse Non linéaires (Proc. Conf. Besanob, 1977) Lecture Notes in Mathematics, vol. 665. Springer, Berlin, 1978, pp. 205–227. J. Funct. Anal. 260(5) 1257–1284 (2011)Google Scholar
  31. 31.
    Sun, J.J., Tang, C.L.: Existence and multiplicity of solutions for Kirchhoff type equations. Nonlinar Anal. (TMA) 74, 543–549 (2011)MathSciNetGoogle Scholar
  32. 32.
    Pezzo, L.M., Rossi, J.D.: Trace for fractional Sobolev spaces with variables exponents. Adv. Oper. Theory 2(4), 435–446 (2017)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2002)zbMATHGoogle Scholar
  34. 34.
    Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR Izv. 29(1), 33–66 (1987)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Jazan Technical CollegeJazanKingdom of Saudi Arabia
  2. 2.Department of MathematicsFaculty of Sciences of TunisTunisTunisia
  3. 3.Community College of RafhaNorthern Border UniversityRafhaKingdom of Saudi Arabia
  4. 4.Department of MathematicsQuang Binh UniversityDong HoiVietnam

Personalised recommendations