Advertisement

Complex Analysis and Operator Theory

, Volume 13, Issue 3, pp 1401–1417 | Cite as

Discrete Magnetic Bottles on Quasi-Linear Graphs

  • Zied MediniEmail author
Article
  • 35 Downloads

Abstract

We study discrete magnetic Schrödinger operators on graphs that are obtained by adding decorations to the linear graph \(\mathbb {N}\). We construct examples in which the magnetic field destroys the essential spectrum. The methods rely on spectral comparison theorems for quadratic forms and a careful study of an explicit Schrödinger operator on a finite graph.

Notes

Acknowledgements

I would like to express my sincere gratitude to my advisors Professors Nabila Torki-Hamza and Luc Hillairet for the continuous support of my Ph.D. study, for their patience, motivation, and immense knowledge. Without their wisdom this paper would not have been possible. I would like to thank the Laboratory ofMathematics of Orleans (MAPMO) and the research unity (UR/13ES47) of Faculty of Sciences of Bizerte (University of Carthage) for its financial and its continuous support. Finally, this work was financially supported by the “PHC Utique” program of the French Ministry of Foreign Affairs and Ministry of higher education and research and the Tunisian Ministry of higher education and scientific research in the CMCU Project No. 13G1501 “Graphes, Géométrie et théorie Spectrale”.

References

  1. 1.
    Bonnefont, M., Golénia, S.: Essential spectrum and Weyl asymptotics for discrete Laplacians. Annales de la Faculté des Sciences de Toulouse: Mathématiques, Série 6 : Tome 24(3), 563–624 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Colin de Verdière, Y.: Asymptotique de Weyl pour les bouteilles magnétiques. Commun. Math. Phys. 105, 327–335 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Colin de Verdière, Y., Torki-Hamza, N., Truc, F.: Essential self-adjointness for combinatorial Schrödinger operators III-magnetic fields. Ann. Fac. Sci. Toulouse Math. Sér, 6 20(3), 599–611 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Colin de Verdière, Y., Torki-Hamza, N., Truc, F.: Essential self-adjointness for combinatorial Schrödinger operators II-Metrically non complete graphs. Math. Phys. Anal. Geom. 14(1), 21–38 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dodziuk, J., Matthai, V.: Kato’s inequality and asymptotic spectral properties for discrete magnetic Laplacians, in: the ubiquitous heat kernel. In: Contemporary Mathematics-American Mathematical Society, vol. 398, pp. 69–81. Providence, RI, (2006)Google Scholar
  6. 6.
    Golénia, S.: Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians. J. Funct. Anal. 266(5), 2662–2688 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Golénia, S., Truc, F.: The magnetic Laplacian acting on discrete cusps. Doc. Math. 22, 1709–1727 (2017)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Grigor’yan, A.: Analysis on graphs. In: Lecture notes University of Bielefeld, (2011/2012)Google Scholar
  9. 9.
    Hiroshima, F., Sasaki, I., Shirai, T., Suzuki, A.: Note on the spectrum of discrete Schrödinger operators. J. Math. Ind. 4, 105–108 (2012)zbMATHGoogle Scholar
  10. 10.
    Morame, A., Truc, F.: Magnetic bottles on geometrically finite hyperbolic surface. J. Geom. Phys. 59, 1079–1085 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pavlov, B.: A model of zero-radius potential with internal structure. Teor. Mat. Fiz. 59(3), 345–354. (1984) (English translation: Theor. Math. Phys. 59(3), 544–550) (1984)Google Scholar
  12. 12.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Tome I (1980)Google Scholar
  13. 13.
    Schenker, J., Aizenman, M.: The creation of spectral gaps by graph decoration. Lett. Math. Phys. 53(3), 253–262 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shubin, M.: Discrete magnetic Laplacian. Commun. Math. Phys. 164, 259–275 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sy, P.W., Sunada, T.: Discrete Schrödinger operators on a graph. Nagoya Math. J. 125, 141–150 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Torki-Hamza, N.: Laplaciens de graphes infinis I-Graphes métriquement complets. Conflu. Math. 2(3), 333–350 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Torki-Hamza, N.: Géométrie et analyse sur les graphes, cours Mastère 2; 2013/2014, Faculté des Sciences de BizerteGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut Denis PoissonUniversité d’OrléansOrléansFrance
  2. 2.Faculté des Sciences de BizerteUniversité de CarthageZarzounaTunisia

Personalised recommendations