Advertisement

Attractors of trees of maps and of sequences of maps between spaces with applications to subdivision

  • Nira Dyn
  • David Levin
  • Peter MassopustEmail author
Article
  • 21 Downloads

Abstract

An extension of the Banach fixed-point theorem for a sequence of maps on a complete metric space (Xd) has been presented in a previous paper. It has been shown that backward trajectories of maps \(X\rightarrow X\) converge under mild conditions and that they can generate new types of attractors such as scale-dependent fractals. Here we present two generalizations of this result and some potential applications. First, we study the structure of an infinite tree of maps \(X\rightarrow X\) and discuss convergence to a unique “attractor” of the tree. We also consider “staircase” sequences of maps, that is, we consider a countable sequence of metric spaces \(\{(X_i,d_i)\}\) and an associated countable sequence of maps \(\{T_i\}\), \(T_i:X_{i}\rightarrow X_{i-1}\). We examine conditions for the convergence of backward trajectories of the \(\{T_i\}\) to a unique attractor. An example of such trees of maps are trees of function systems leading to the construction of fractals which are both scale-dependent and location dependent. The staircase structure facilitates linking all types of linear subdivision schemes to attractors of function systems.

Keywords

Fractals subdivision schemes fixed points attractors function systems 

Mathematics Subject Classification

Primary 47H10 Secondary 28A80 41A30 54E50 

Notes

References

  1. 1.
    Barnsley, M.F.: Fractals Everywhere. Academic Press, Orlando (1988)zbMATHGoogle Scholar
  2. 2.
    Barnsley, M.F.: Super Fractals. Cambridge University Press, Cambridge (2006)Google Scholar
  3. 3.
    Barnsley, M.F., Elton, J.H., Hardin, D.P.: Recurrent iterated function systems. Constr. Approx. 5(1), 3–31 (1989)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Am. Math. Soc. 93, 453 (1991)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Conti, C., Dyn, N., Manni, C., Mazure, M.-L.: Convergence of univariate non-stationary subdivision schemes via asymptotic similarity. Comput. Aided Geometr. Des. 37, 1–8 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dyn, N., Kounchev, O., Levin, D., Render, H.: Regularity of generalized Daubechies wavelets reproducing exponential polynomials with real-valued parameters. Appl. Comput. Harm. Anal. 37(2), 288–306 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dyn, N., Levin, D., Gregory, J.A.: A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geometr. Des. 4(4), 257–268 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dyn, N., Levin, D.: Analysis of asymptotically equivalent binary subdivision schemes. J. Math. Anal. Appl. 193(2), 594–621 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 20, 1–72 (2002)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dyn, N., Levin, D., Yoon, J.: A new method for the analysis of univariate nonuniform subdivision schemes. Constr. Approx. 40(2), 173–188 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fisher, Y.: Fractal Image Compression: Theory and Application. Springer, New York (1995)CrossRefGoogle Scholar
  13. 13.
    Levin, D.: Using Laurent polynomial representation for the analysis of non-uniform binary subdivision schemes. Adv. Comput. Math. 11, 41–54 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Levin, D., Dyn, N., Viswanathan, P.: Non-stationary versions of fixed-point theory, with applications to fractals and subdivision. J. Fixed Point Theory Appl. 21, 1–25 (2019)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Massopust, P.R.: Fractal functions and their applications. Chaos Solitons Fractals 8(2), 171–190 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Navascues, M.A.: Fractal approximation. Complex Anal. Oper. Theory 4(4), 953–974 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Prautzsch, H., Boehm, W., Palusny, M.: Bézier and B-Spline Techniques. Springer, Germany (2002)CrossRefGoogle Scholar
  18. 18.
    Schaefer, S., Levin, D., Goldman, R.: Subdivision schemes and attractors. In: Desbrun, M., Pottmann, H. (eds) Eurographics Symposium on Geometry Processing (2005). Eurographics Association 2005, Aire-la-Ville Switzerland. ACM International Conference Proceeding Series 225, pp. 171–180 (2005)Google Scholar
  19. 19.
    Viswanathan, P., Chand, A.K.B.: Fractal rational functions and their approximation properties. J. Approx. Theory 185, 31–50 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Centre of MathematicsTechnical University of MunichMunichGermany

Personalised recommendations