Advertisement

Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces

  • Kanokwan Sawangsup
  • Wutiphol SintunavaratEmail author
  • Yeol Je Cho
Article
  • 88 Downloads

Abstract

In this paper, we introduce the notion of an orthogonal F-contraction mapping and establish some fixed point results for such contraction mappings in orthogonally metric spaces. Also, we give some examples which claim that the main results are generalizations of the Wardowski’s fixed point theorem. As applications of the main results, we apply our main results to show the existence of a unique solution of the first-order ordinary differential equation.

Keywords

Fixed point orthogonally metric space orthogonal F-contraction differential equation 

Mathematics Subject Classification

47H10 54H25 

Notes

Acknowledgements

The second author would like to thank the Thailand Research Fund and Office of the Higher Education Commission under Grant No. MRG6180283 for financial support during the preparation of this manuscript.

References

  1. 1.
    Banach, S.: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund. Math. 3, 133–181 (1992)CrossRefGoogle Scholar
  2. 2.
    Cho, Y.J.: Survey on metric fixed point theory and applications. In M. Ruzhansky et al. (eds.) Advances in Real and Complex Analysis with Applications, Trends in Math, pp. 183–241. Springer Singapore, (2017) Google Scholar
  3. 3.
    Ran, A.C.M., Reuring, M.C.B.: A fixed point theorem in partially ordered sets and some appllications to matrix equations. Proc. Am. Math. Soc. 132, 1435–1443 (2004)CrossRefGoogle Scholar
  4. 4.
    Nieto, J.J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223–239 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gordji, M.E., Rameani, M., De La Sen, M., Cho, Y.J.: On orthogonal sets and Banach fixed point theorem. Fixed Point Theory 18, 569–578 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Reich, S.: Kannan’s fixed point theorem. Boll. Della Unione Matematica Italiana 4(4), 1–11 (1971)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hardy, G.E., Rogers, T.D.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16, 201–206 (1973)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ćirić, L.J.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Matkowski, J.: Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 62, 344–348 (1977)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rhoades, B.E.: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683–2693 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Berinde, V.: Iterative approximation of fixed points. Springer, Berlin, Heidelberg (2007)zbMATHGoogle Scholar
  13. 13.
    Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136, 1861–1869 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Du, W.S.: Some new results and generalizations in metric fixed point theory. Nonlinear Anal. 73, 1439–1446 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121–124 (1971)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Salazar, L., Aguirre Reich, S.: A remark on weakly contractive mappings. J. Nonlinear Convex. Anal. 16, 767–773 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Yan, F., Su, Y., Feng, Q.: A new contraction mapping principle in partially ordered metric spaces and applications to ordinary differenctial equations. Fixed Point Theory Appl. 2012, 152 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Samet, B.: Ran-Reurings fixed point theorem is an immediate consequence of the Banach contraction principle. J. Nonlinear Sci. Appl. 9, 873–875 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kanokwan Sawangsup
    • 1
  • Wutiphol Sintunavarat
    • 1
    Email author
  • Yeol Je Cho
    • 2
    • 3
  1. 1.Department of Mathematics and Statistics Faculty of Science and TechnologyThammasat University, Rangsit CenterPathumthaniThailand
  2. 2.Department of Mathematics EducationGyeongsang National UniversityJinjuSouth Korea
  3. 3.School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations