Resolvents of convex functions in complete geodesic metric spaces with negative curvature

  • Takuto KajimuraEmail author
  • Yasunori Kimura


In this paper, we define a resolvent of a proper lower semicontinuous convex function in a complete geodesic space with negative curvature and we show its well-definedness and fundamental properties. We further show a fixed point theorem for hyperbolically nonspreading mappings, which can be applied to the resolvent defined in this paper. We also apply these results to convex optimization problems in complete geodesic spaces with negative curvature.


Resolvent approximation fixed point geodesic space nonspreading 

Mathematics Subject Classification

47H10 52A41 



This work was supported by JSPS KAKENHI Grant Number 15K05007.


  1. 1.
    Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces. De Gruyter, Würzbrung (2014)zbMATHGoogle Scholar
  2. 2.
    Bačák, M.: The proximal point algorithm in metric spaces. Isreal J. Math. 29, 689–701 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bačák, M., Reich, S.: The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces. J. Fixed Point Theory Appl. 16, 189–202 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)CrossRefGoogle Scholar
  5. 5.
    Dhompongsa, S., Kirk, W.A., Sims, B.: Fixed points of uniformly lipschitzian mappings. Nonlinear Anal. 65, 762–772 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jost, J.: Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 70, 659–673 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kimura, Y., Kohsaka, F.: Spherical nonspreadingness of resolvents of convex functions in geodesic spaces. J. Fixed Point Theory Appl. 18, 93–115 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kohsaka, F.: Existence and approximation of fixed points of vicinal mappings in geodesic spaces. Pure Appl. Funct. Anal. 3, 91–106 (2018)MathSciNetGoogle Scholar
  9. 9.
    Kohsaka, F., Takahashi, W.: Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Arch. Math. (Basel) 91, 166–177 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mayer, U.F.: Gradient flows on nonpositively curved metric spaces and harmonic maps. Commun. Anal. Geom. 6, 199–206 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Reich, S., Shafrir, I.: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15, 537–538 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Suzuki, T.: Fixed point theorems for a new nonlinear mapping similar to a nonspreading mapping. Fixed Point Theory Appl 2014, 13 (2014). MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Information ScienceToho UniversityFunabashiJapan

Personalised recommendations