Advertisement

Semilinear fractional differential equations with infinite delay and non-instantaneous impulses

  • Mouffak BenchohraEmail author
  • Sara Litimein
  • Juan J. Nieto
Article
  • 75 Downloads

Abstract

In this article, we study the existence of mild solutions for a new class of impulsive semilinear fractional differential equations with infinite delay and non-instantaneous impulses in Banach spaces. The new results are obtained using suitable fixed point theorems and the technique of measures of noncompactness. An example is also given to illustrate the obtained theory.

Keywords

Fractional differential equations infinite delay almost sectorial operators resolvent of operators non-instantaneous impulse conditions 

Mathematics Subject Classification

26A33 34A08 34A37 34K37 

Notes

Acknowledgements

The work of J. J. Nieto has been partially supported by the Ministerio de Economia y Competitividad of Spain, Agencia Estatal de Investigación under Grant MTM201675140-P, and XUNTA de Galicia under Grant GRC2015-004, and and co-financed by the European Community fund FEDER.

References

  1. 1.
    Abbas, S., Benchohra, M.: Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses. Appl. Math. Comput. 257, 190–198 (2015)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Abbas, S., Benchohra, M., Graef, J., Henderson, J.: Implicit Fractional Differential and Integral Equations; Existence and Stability. De Gruyter, Berlin (2018)CrossRefzbMATHGoogle Scholar
  3. 3.
    Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  4. 4.
    Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York (2015)zbMATHGoogle Scholar
  5. 5.
    Agarwal, R.P., Baleanu, D., Nieto, J.J., Torrres, D.F.M., Zhou, Y.: A survey on fuzzy fractional differential and optimal control nonlocal evolution equations. J. Comput. Appl. Math.  https://doi.org/10.1016/j.cam.2017.09.039 (in press)
  6. 6.
    Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Agarwal, R.P., Hristova, S., O’Regan, D.: Non-Instantaneous Impulses in Differential Equations. Springer, New York (2017)CrossRefzbMATHGoogle Scholar
  8. 8.
    Agarwal, R.P., Meechan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  9. 9.
    Bai, L., Nieto, J.J.: Variational approach to differential equations with not instantaneous impulses. Appl. Math. Lett. 73, 44–48 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bai, L., Nieto, J.J., Wang, X.: Variational approach to non-instantaneous impulsive nonlinear differential equations. J. Nonlinear Sci. Appl. 10, 2440–2448 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Baleanu, D., Arjunan, M.M., Nagaraj, M., Suganya, S.: Approximate controllability of second-order nonlocal impulsive functional integro-differential systems in Banach spaces. Bull. Korean Math. Soc. 55(4), 1065–1092 (2018)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. World Scientific Publishing, New York (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Banas̀, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Marcel Dekker, New York (1980)Google Scholar
  14. 14.
    Banas̀, J., Sadarangani, K.: On some measures of noncompactness in the space of continuous functions. Nonlinear Anal. 68, 377–383 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Belmekki, M., Benchohra, M.: Existence results for fractional order semilinear functional differential equations. Proc. A. Razmadze Math. Inst. 146, 9–20 (2008)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Belmekki, M., Benchohra, M., Górniewicz, L.: Semilinear functional differential equations with fractional order and infinite delay. Fixed Point Theory 9, 423–439 (2008)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340–1350 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chen, P., Li, Y.: Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions. Results Math. 63, 731–744 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Colao, V., Muglia, L., Xu, H.-K.: Existence of solutions for a second-order differential equation with non-instantaneous impulses and delay. Ann. Mat. Pura Appl. 195, 697–716 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  22. 22.
    Gautam, G.R., Dabas, J.: Mild solution for fractional functional integro-differential equation with not instantaneous impulse. Malaya J. Mat. 2, 428–437 (2014)zbMATHGoogle Scholar
  23. 23.
    Guo, D.J., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Kluwer Academic Publishers, Dordrecht (1996)CrossRefzbMATHGoogle Scholar
  24. 24.
    Hale, J., Kato, J.: Phase space for retarded equations with infinite delay. Funkcial. Ekvac. 21, 11–41 (1978)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Heinz, H.P.: On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 7, 1351–1371 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)CrossRefzbMATHGoogle Scholar
  28. 28.
    Hino, Y., Murakami, S., Naito, T.: Functional differential equations with infinite delay. In: Lecture Notes in Mathematics, vol. 1473. Springer, Berlin (1991)Google Scholar
  29. 29.
    Kalamani, P., Baleanu, D., Mallika Arjunan, M.: Local existence for an impulsive fractional neutral integro-differential system with Riemann–Liouville fractional derivatives in a Banach space. Adv. Differ. Equ. 2018, 416 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)Google Scholar
  31. 31.
    Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)CrossRefGoogle Scholar
  32. 32.
    Li, Y.: Existence of solutions of initial value problems for abstract semilinear evolution equations. Acta Math. Sin. 48, 1089–1094 (2005)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
  34. 34.
    Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 4(5), 985–999 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219, 6743–6749 (2013)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Podlubny, I.: Fractional Differential Equation. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  37. 37.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Yverdon (1993)zbMATHGoogle Scholar
  38. 38.
    Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)CrossRefzbMATHGoogle Scholar
  39. 39.
    Tarasov, V.E.: Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  40. 40.
    von Wahl, W.: Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Rumen hlderstetiger Funktionen. Nachr. Akad. Wiss. Gtt. Math. Phys. Kl. 11, 231–258 (1972)zbMATHGoogle Scholar
  41. 41.
    Wang, R.N., Chena, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Wang, J., Li, X.: Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses. J. Appl. Math. Comput. 46, 321–334 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Wu, G.-C., Baleanu, D.: Stability analysis of impulsive fractional difference equations. Fract. Calc. Appl. Anal. 21(2), 354–375 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Zhang, X., Li, Y., Chen, P.: Existence of extremal mild solutions for the initial value problem of evolution equations with non-instantaneous impulses. J. Fixed Point Theor. Appl. 19, 3013–3027 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mouffak Benchohra
    • 1
    Email author
  • Sara Litimein
    • 1
  • Juan J. Nieto
    • 2
  1. 1.Laboratory of MathematicsDjillali Liabes University of Sidi Bel-AbbèsSidi Bel-AbbèsAlgeria
  2. 2.Departamento de Estatistica, Análise Matemático e Optimización, Instituto de MatemáticasUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations