Non-stationary versions of fixed-point theory, with applications to fractals and subdivision

  • David LevinEmail author
  • Nira Dyn
  • Viswanathan Puthan Veedu


Iterated Function Systems (IFSs) have been at the heart of fractal geometry almost from its origin, and several generalizations for the notion of IFS have been suggested. Subdivision schemes are widely used in computer graphics and attempts have been made to link fractals generated by IFSs to limits generated by subdivision schemes. With an eye towards establishing connection between non-stationary subdivision schemes and fractals, this paper investigates “trajectories of maps defined by function systems” which are considered as generalizations of the traditional IFS. The significance of ’forward’ and ’backward’ trajectories of general sequences of maps is studied. The convergence properties of these trajectories constitute a non-stationary version of the classical fixed-point theory. Unlike the ordinary fractals which are self-similar at different scales, the attractors of trajectories of maps defined by function systems may have different structures at different scales.


Fractals subdivision schemes fixed-point theory attractors 

Mathematics Subject Classification

28A80 47H10 54E50 41A30 



  1. 1.
    Barnsley, M.F.: Fractals Everywhere. Academic Press, Orlando (1988)zbMATHGoogle Scholar
  2. 2.
    Barnsley, M.F.: Super Fractals. Cambridge University Press, Cambridge (2006)Google Scholar
  3. 3.
    Barnsley, M.F., Elton, J.H., Hardin, D.P.: Recurrent iterated function systems. Constr. Approx. 5(1), 3–31 (1989)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barnsley, M.F., Hutchinson, J.E., Stenflo, : V-variable fractals: fractals with partial self similarity. Adv. Math. 218(6), 2015–2088 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision, Memoirs of the American Mathematical Society, vol. 93 (453). American Mathematical Society, Providence (1991)Google Scholar
  6. 6.
    Conti, C., Dyn, N., Manni, C., Mazure, M.-L.: Convergence of univariate non-stationary subdivision schemes via asymptotic similarity. Comput. Aided Geom. Design 37, 1–8 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dyn, N., Levin, D.: Analysis of asymptotically equivalent binary subdivision schemes. J. Math. Anal. Appl. 193(2), 594–621 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer., 1–72 (2002)Google Scholar
  9. 9.
    Dyn, N., Levin, D., Gregory, J.A.: A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Design 4(4), 257–268 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dyn, N., Kounchev, O., Levin, D., Render, H.: Regularity of generalized Daubechies wavelets reproducing exponential polynomials with real-valued parameters. Appl. Comput. Harmon. Anal. 37(2), 288–306 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fisher, Y.: Fractal Image Compression: Theory and Application. Springer, New York (1995)CrossRefGoogle Scholar
  12. 12.
    Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Levin, D.: Using Laurent polynomial representation for the analysis of non-uniform binary subdivision schemes. Adv. Comput. Math. 11, 41–54 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Massopust, P.R.: Fractal functions and their applications. Chaos Solitons Fractals 8(2), 171–190 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Micchelli, C.A., Prautzsch, H.: Uniform refinement of curves. Linear Algebra Appl. 114(115), 841–870 (1989)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Navascues, M.A.: Fractal approximation. Complex Anal. Oper. Theory 4(4), 953–974 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Prautzsch, H., Boehm, W., Palusny, M.: Bézier and B-spline Techniques. Springer, Berlin (2002)CrossRefGoogle Scholar
  18. 18.
    Schaefer, S., Levin, D., Goldman, R.: Subdivision schemes and attractors. In: Desbrun, M., Pottmann, H. (eds.) Eurographics Symposium on Geometry Processing (2005). Eurographics Association 2005, Aire-la-Ville Switzerland. ACM International Conference Proceeding Series, vol. 225, pp. 171–180 (2005)Google Scholar
  19. 19.
    Viswanathan, P., Chand, A.K.B.: Fractal rational functions and their approximation properties. J. Approx. Theory 185, 31–50 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Department of MathematicsIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations