Advertisement

A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons

  • Yiquan Wu
  • Ying XuEmail author
  • Ningyi Zhou
Research Article
  • 8 Downloads

Abstract

NidA3B3 is a terminal dioxygenase whose favorable substrates are high-molecular-weight polyaromatic hydrocarbons (PAHs) from Mycobacterium vanbaalenii PYR-1, a powerful PAHs degradation strain. NidA3B3 was reported to incorporate a dioxygen into the benzene ring of PAHs when equipped with an exogenous electron transport chain components PhdCD from Nocardioides sp. strain KP7 by biotransformation, but this enzyme system was not particularly efficient. In this study, strain PYR-1 was confirmed to utilize four different PAHs at different growth rates. When PhtAcAd, an endogenous electron transport chain ofa phthalate dioxygenase system, was substituted for PhdCD to couple with NidA3B3, the specific activity to convert phenanthrene by strain BL21(DE3) [pNidA3B3-PhAcAd] was 0.15±0.03 U/mg, but the specificactivity of strain BL21(DE3) [pNidA3B3-PhdCD] was only 0.025±0.006 U/mg. In addition, FNidA3, encoded by a newly defined ORF, has a prolonged 19-amino acid sequence at the N-terminus compared with NidA3. FNidA3B3 increased the activity by 50% approximately than NidA3B3 when using PhtAcAd. Components of the electron transport chain PhtAc and PhtAd were purified and characterized. The Km, kcat, kcat/Km values of the PhtAd were 123±26.9 µM, 503±49.9 min−1, 4.1 µM−1 ×min−1, respectively. And the; Km, kcat, kcat/Km values of the ferredoxin PhtAc were 52.5±9.7 µM, 3.8±0.19 min−1 and 0.07 µM−1×min−1 respectively. Basing on the phylogenetic analysis, NidA3/FNidA3 were far from its isoenzyme NidA from the same strain. Combining their primary differences of transcriptional pattern in vivo, it indicated that the functionally similar Rieske dioxygenases NidA3B3/FNidA3B3 and NidAB might originate from different ancestors.

Keywords

Biodegradation Polyaromatic hydrocarbons Biotransformation Ring-hydroxylating dioxygenase system 

Notes

Acknowledgements

This work is supported by the National Key R&D Program of China (Grant No. 2018YFC0309800), National Natural Science Foundation of China (Grant No. 31570100) and Shanghai Science and Technology Commission Scientific Research Project (No. 17JC1403300).

References

  1. Barry S M, Challis G L (2013). Mechanism and catalytic diversity of Rieske non-heme iron-dependent oxygenases. ACS Catalysis, 3(10): 2362–2370CrossRefGoogle Scholar
  2. Boldrin B, Tiehm A, Fritzsche C (1993). Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Applied and Environmental Microbiology, 59(6): 1927–1930Google Scholar
  3. Boström C E, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, Rannug A, Törnqvist M, Victorin K, Westerholm R (2002). Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environmental Health Perspectives, 110(Suppl 3): 451–488CrossRefGoogle Scholar
  4. Capyk J K, D’Angelo I, Strynadka N C, Eltis L D (2009). Characterization of 3-ketosteroid 9-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis. Journal of biological chemistry, 284(15): 9937–9946CrossRefGoogle Scholar
  5. Cébron A, Norini M P, Beguiristain T, Leyval C (2008). Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDalpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples. Journal of Microbiological Methods, 73(2): 148–159CrossRefGoogle Scholar
  6. Dean-Ross D, Cerniglia C E (1996). Degradation of pyrene by Mycobacterium flavescens. Applied Microbiology and Biotechnology, 46(3): 307–312CrossRefGoogle Scholar
  7. DeBruyn J M, Mead T J, Sayler G S (2012). Horizontal transfer of PAH catabolism genes in Mycobacterium: evidence from comparative genomics and isolated pyrene-degrading bacteria. Environmental Science & Technology, 46(1): 99–106CrossRefGoogle Scholar
  8. Ensley B D, Gibson D T (1983). Naphthalene dioxygenase: Purification and properties of a terminal oxygenase component. Journal of Bacteriology, 155(2): 505–511Google Scholar
  9. Fischer F, Raimondi D, Aliverti A, Zanetti G (2002). Mycobacterium tuberculosis FprA, a novel bacterial NADPH-ferredoxin reductase. European Journal of Biochemistry, 269(12): 3005–3013CrossRefGoogle Scholar
  10. Heitkamp M A, Franklin W, Cerniglia C E (1988). Microbial metabolism of polycyclic aromatic hydrocarbons: Isolation and characterization of a pyrene-degrading bacterium. Applied and Environmental Microbiology, 54(10): 2549–2555Google Scholar
  11. Karlsson A, Parales J V, Parales R E, Gibson D T, Eklund H, Ramaswamy S (2003). Crystal structure of naphthalene dioxygenase: Side-on binding of dioxygen to iron. Science, 299 (5609): 1039–1042CrossRefGoogle Scholar
  12. Khan A A, Wang R F, Cao W W, Doerge D R, Wennerstrom D, Cerniglia C E (2001). Molecular cloning, nucleotide sequence, and expression ofgenes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Applied and Environmental Microbiology, 67(8): 3577–3585CrossRefGoogle Scholar
  13. Kim S J, Kweon O, Freeman J P, Jones R C, Adjei M D, Jhoo J W, Edmondson R D, Cerniglia C E (2006). Molecular cloning and expression of genes encoding a novel dioxygenase involved in low-and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Applied and Environmental Microbiology, 72(2): 1045–1054CrossRefGoogle Scholar
  14. Kim S J, Kweon O, Jones R C, Edmondson R D, Cerniglia C E (2008). Genomic analysis ofpolycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation, 19(6): 859–881CrossRefGoogle Scholar
  15. Kim S J, Kweon O, Jones R C, Freeman J P, Edmondson R D, Cerniglia C E (2007). Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. Journal of Bacteriology, 189(2): 464–472CrossRefGoogle Scholar
  16. Kweon O, Kim S J, Freeman J P, Song J, Baek S, Cerniglia C E (2010). Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1. mBio, 1(2): e00135–10CrossRefGoogle Scholar
  17. Kweon O, Kim S J, Holland R D, Chen H, Kim D W, Gao Y, Yu L R, Baek S, Baek D H, Ahn H, Cerniglia C E (2011). Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1. Journal of Bacteriology, 193(17): 4326–4337CrossRefGoogle Scholar
  18. Kweon O, Kim S J, Jones R C, Freeman J P, Adjei M D, Edmondson R D, Cerniglia C E (2007). A polyomic approach to elucidate the fluoranthene-degradative pathway in Mycobacterium vanbaalenii PYR-1. Journal of Bacteriology, 189(13): 4635–4647CrossRefGoogle Scholar
  19. Kweon O, Kim S J, Kim D W, Kim J M, Kim H L, Ahn Y, Sutherland J B, Cerniglia C E (2014). Pleiotropic and epistatic behavior of a ring-hydroxylating oxygenase system in the polycyclic aromatic hydrocarbon metabolic network from Mycobacterium vanbaalenii PYR-1. Journal of Bacteriology, 196(19): 3503–3515CrossRefGoogle Scholar
  20. Lama A, Pawaria S, Bidon-Chanal A, Anand A, Gelpí J L, Arya S, Martí M, Estrin D A, Luque F J, Dikshit K L (2009). Role of Pre-A motif in nitric oxide scavenging by truncated hemoglobin, HbN, of Mycobacterium tuberculosis. Journal of biological chemistry, 284 (21): 14457–14468CrossRefGoogle Scholar
  21. McLean K, Dunford A, Sabri M, Neeli R, Girvan H, Balding P, Leys D, Seward H, Marshall K, Munro A (2006). CYP121, CYP51 and Associated Redox Systems in Mycobacterium tuberculosis: Towards Deconvoluting Enzymology of P450 Systems in a Human Pathogen. London: Portland Press LimitedGoogle Scholar
  22. Moody J D, Freeman J P, Doerge D R, Cerniglia C E (2001). Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Applied and Environmental Microbiology, 67(4): 1476–1483CrossRefGoogle Scholar
  23. Moody J D, Freeman J P, Fu P P, Cerniglia C E (2004). Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Applied and Environmental Microbiology, 70(1): 340–345CrossRefGoogle Scholar
  24. Saito A, Iwabuchi T, Harayama S (2000). A novel phenanthrene dioxygenase from Nocardioides sp. Strain KP7: Expression in Escherichia coli. Journal of Bacteriology, 182(8): 2134–2141CrossRefGoogle Scholar
  25. Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996). Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Applied and Environmental Microbiology, 62(1): 13–19Google Scholar
  26. Siebold C, Flükiger K, Beutler R, Erni B (2001). Carbohydrate transporters of the bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS). FEBS Letters, 504(3): 104–111CrossRefGoogle Scholar
  27. Stingley R L, Brezna B, Khan A A, Cerniglia C E (2004). Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology, 150(11): 3749–3761CrossRefGoogle Scholar
  28. Stone E A, Lough G C, Schauer J J, Praveen P, Corrigan C, Ramanathan V (2007). Understanding the origin of black carbon in the atmospheric brown cloud over the Indian Ocean. Journal of Geophysical Research: Atmospheres, 112(D22): D22S23, 1–10CrossRefGoogle Scholar
  29. Wang L, Gao Y Z, Zhao H, Xu Y, Zhou N Y (2019). Biodegradation of 2-bromonitrobenzene by Pseudomonas stutzeri ZWLR2-1. International Biodeterioration & Biodegradation, 138: 87–91CrossRefGoogle Scholar
  30. Wolfe M D, Parales J V, Gibson D T, Lipscomb J D (2001). Single turnover chemistry and regulation of O2 activation by the oxygenase component of naphthalene 1,2-dioxygenase. Journal of biological chemistry, 276(3): 1945–1953CrossRefGoogle Scholar
  31. Xu Y, Zhou N Y (2017). Microbial remediation of aromatics-contaminated soil. Frontiers of Environmental Science & Engineering, 11(2): 1–9CrossRefGoogle Scholar
  32. Yu C L, Liu W, Ferraro D J, Brown E N, Parales J V, Ramaswamy S, Zylstra G J, Gibson D T, Parales R E (2007). Purification, characterization, and crystallization of the components ofa biphenyl dioxygenase system from Sphingobium yanoikuyae B1. Journal of Industrial Microbiology & Biotechnology, 34(4): 311–324CrossRefGoogle Scholar
  33. Zhang Y, Tao S, Shen H, Ma J (2009). Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population. Proceedings of the National Academy of Sciences of the United States of America, 106(50): 21063–21067CrossRefGoogle Scholar
  34. Zhou H W, Guo C L, Wong Y S, Tam NF Y (2006). Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments. FEMS Microbiology Letters, 262(2): 148–157CrossRefGoogle Scholar
  35. Zhou N Y, Al-Dulayymi J, Baird M S, Williams P A (2002). Salicylate 5-hydroxylase from Ralstonia sp. strain U2: A monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. Journal of Bacteriology, 184(6): 1547–1555CrossRefGoogle Scholar
  36. Zink G, Lorber K E (1995). Mass spectral identification of metabolites formed by microbial degradation of polycyclic aromatic hydrocarbons (PAH). Chemosphere, 31(9): 4077–4084CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Joint International Research Laboratory of Metabolic & Developmental SciencesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations