Advertisement

Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review

  • Yu Jiang
  • Beidou XiEmail author
  • Rui LiEmail author
  • Mingxiao Li
  • Zheng Xu
  • Yuning Yang
  • Shaobo Gao
Review Article
  • 7 Downloads
Part of the following topical collections:
  1. Special Issue—China Urban Water Environment and Water Ecology

Abstract

Microbial Fe(III) reduction is a significant driving force for the biogeochemical cycles of C, O, P, S, N, and dominates the natural bio-purification of contaminants in groundwater (e.g., petroleum hydrocarbons, chlorinated ethane, and chromium). In this review, the mechanisms and environmental significance of Fe(III) (hydro)oxides bioreduction are summarized. Compared with crystalline Fe(III) (hydro)oxides, amorphous Fe(III) (hydro)oxides are more bioavailable. Ligand and electron shuttle both play an important role in microbial Fe(III) reduction. The restrictive factors of Fe(III) (hydro) oxides bioreduction should be further investigated to reveal the characteristics and mechanisms of the process. It will improve the bioavailability of crystalline Fe(III) (hydro)oxides and accelerate the anaerobic oxidation efficiency of the reduction state pollutants. Furthermore, the approach to extract, culture, and incubate the functional Fe(III) reducing bacteria from actual complicated environment, and applying it to the bioremediation of organic, ammonia, and heavy metals contaminated groundwater will become a research topic in the future. There are a broad application prospects of Fe (III) (hydro)oxides bioreduction to groundwater bioremediation, which includes the in situ injection and permeable reactive barriers and the innovative Kariz wells system. The study provides an important reference for the treatment of reduced pollutants in contaminated groundwater.

Keywords

Microbial Fe(III) reduction Mechanism Groundwater contamination Remediation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21606214) and the Water Pollution Control and Control of Major National Science and Technology Projects in China (No. 2018ZX07109-003). We also acknowledge the valuable comments from the reviewers and the associate editor.

References

  1. Aburto-Medina A, Ball A S (2015). Microorganisms involved in anaerobic benzene degradation. Annals of Microbiology, 65(3): 1201–1213CrossRefGoogle Scholar
  2. Al-Abadleh H A (2015). Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances. RSC Advances, 5(57): 45785–45811CrossRefGoogle Scholar
  3. Amstaetter K, Borch T, Kappler A (2012). Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochimica et Cosmochimica Acta, 85: 326–341CrossRefGoogle Scholar
  4. Anderson R T, Lovley D R (2000). Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environmental Science & Technology, 34(11): 2261–2266CrossRefGoogle Scholar
  5. Anderson R T, Rooney-Varga J N, Gaw C V, Lovley D R (1998). Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers. Environmental Science & Technology, 32(9): 1222–1229CrossRefGoogle Scholar
  6. Anderson R T, Vrionis H A, Ortiz-Bernad I, Resch C T, Long P E, Dayvault R, Karp K, Marutzky S, Metzler D R, Peacock A, White D C, Lowe M, Lovley D R (2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, 69(10): 5884–5891CrossRefGoogle Scholar
  7. Benner S G, Hansel C M, Wielinga B W, Barber T M, Fendorf S (2002). Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environmental Science & Technology, 36(8): 1705–1711CrossRefGoogle Scholar
  8. Bjerg P L, Tuxen N, Reitzel L A, Albrechtsen H J, Kjeldsen P (2011). Natural attenuation processes in landfill leachate plumes at three Danish sites. Ground Water, 49(5): 688–705CrossRefGoogle Scholar
  9. Bongoua-Devisme A J, Cebron A, Kassin K E, Yoro G R, Mustin C, Berthelin J (2013). Microbial communities involved in Fe reduction and mobility during soil organic matter (SOM) mineralization in two contrasted paddy soils. Geomicrobiology Journal, 30(4): 347–361CrossRefGoogle Scholar
  10. Caccavo Jr F C, Das A (2002). Adhesion of dissimilatory Fe(III)-reducing bacteria to Fe(III) minerals. Geomicrobiology Journal, 19(2): 161–177CrossRefGoogle Scholar
  11. Chen Y, Wang H, Si Y B (2013). Research on the bioaccesibility of HgS by Shewanella oneidensis MR-1. Environmental Science, 34(11): 4466–4472 (in Chinese)Google Scholar
  12. Childers S E, Ciufo S, Lovley D R (2002). Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature, 416(6882): 767–769CrossRefGoogle Scholar
  13. Clement J C, Shrestha J, Ehrenfeld J G, Jaffe P R (2005). Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biology & Biochemistry, 37(12): 2323–2328CrossRefGoogle Scholar
  14. Coates J D, Ellis D J, Gaw C V, Lovley D R (1999). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. International Journal of Systematic Bacteriology, 49(4): 1615–1622CrossRefGoogle Scholar
  15. Cutting R S, Coker V S, Fellowes J W, Lloyd J R, Vaughan D J (2009). Mineralogical and morphological constraints on the reduction of Fe (III) minerals by Geobacter sulfurreducens. Geochimica et Cosmochimica Acta, 73(14): 4004–4022CrossRefGoogle Scholar
  16. Deng M (2010). Kariz wells in arid land and mountain-front depressed ground reservoir. Advances in Water Science, 21(6): 748–756 (in Chinese)Google Scholar
  17. Eisele T C, Gabby K L (2014). Review of reductive leaching of iron by anaerobic bacteria. Mineral Processing and Extractive Metallurgy Review, 35(2): 75–105CrossRefGoogle Scholar
  18. Essaid H I, Bekins B A, Cozzarelli I M (2015). Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding. Water Resources Research, 51(7): 4861–4902CrossRefGoogle Scholar
  19. Esther J, Sukla L B, Pradhan N, Panda S (2015). Fe (III) reduction strategies of dissimilatory iron reducing bacteria. Korean Journal of Chemical Engineering, 32(1): 1–14CrossRefGoogle Scholar
  20. Farkas M, Szoboszlay S, Benedek T, Révész F, Veres P G, Kriszt B, Táncsics A (2017). Enrichment of dissimilatory Fe(III)-reducing bacteria from groundwater of the Siklós BTEX-contaminated site (Hungary). Folia Microbiologica, 62(1): 63–71CrossRefGoogle Scholar
  21. Fortin D, Langley S (2005). Formation and occurrence of biogenic iron-rich minerals. Earth-Science Reviews, 72(1–2): 1–19CrossRefGoogle Scholar
  22. Fredrickson J K, Zachara J M, Kennedy D W, Dong H L, Onstott T C, Hinman N W, Li S M (1998). Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica et Cosmochimica Acta, 62(19–20): 3239–3257CrossRefGoogle Scholar
  23. Gavaskar A R (1999). Design and construction techniques for permeable reactive barriers. Journal of Hazardous Materials, 68(1–2): 41–71CrossRefGoogle Scholar
  24. Hansel C M, Benner S G, Fendorf S (2005). Competing Fe (II)-induced mineralization pathways of ferrihydrite. Environmental Science & Technology, 39(18): 7147–7153CrossRefGoogle Scholar
  25. Hansel C M, Benner S G, Neiss J, Dohnalkova A, Kukkadapu R K, Fendorf S (2003). Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochimica et Cosmochimica Acta, 67(16): 2977–2992CrossRefGoogle Scholar
  26. Heald S, Jenkins R O (1994). Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Applied and Environmental Microbiology, 60(12): 4634–4637Google Scholar
  27. Hori T, Aoyagi T, Itoh H, Narihiro T, Oikawa A, Suzuki K, Ogata A, Friedrich M W, Conrad R, Kamagata Y (2015). Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Frontiers in Microbiology, 6(386): 1–16Google Scholar
  28. Komulainen S, Pursiainen J, Peramaki P, Lajunen M (2013). Complexation of Fe(III) with water-soluble oxidized starch. Stärke, 65(3–4): 338–345CrossRefGoogle Scholar
  29. Kossoff D, Dubbin W E, Alfredsson M, Edwards S J, Macklin M G, Hudson-Edwards K A (2014). Mine tailings dams: characteristics, failure, environmental impacts, and remediation. Applied Geochemistry, 51: 229–245CrossRefGoogle Scholar
  30. Kostka J E, Nealson K H (1995). Dissolution and reduction of magnetite by bacteria. Environmental Science & Technology, 29(10): 2535–2540CrossRefGoogle Scholar
  31. Krumholz L R, Sharp R, Fishbain S S (1996). A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Applied and Environmental Microbiology, 62(11): 4108–4113Google Scholar
  32. Kügler S, Cooper R E, Wegner C E, Mohr J F, Wichard T, Küsel K (2019). Iron-organic matter complexes accelerate microbial iron cycling in an iron-rich fen. Science of the Total Environment, 646: 972–988CrossRefGoogle Scholar
  33. Latta D E, Gorski C A, Boyanov M I, O’Loughlin E J, Kemner K M, Scherer M M (2012). Influence of magnetite stoichiometry on U(VI) reduction. Environmental Science & Technology, 46(2): 778–786CrossRefGoogle Scholar
  34. Li L, Benson C H, Lawson E M (2005). Impact of mineral fouling on hydraulic behavior of permeable reactive barriers. Ground Water, 43(4): 582–596CrossRefGoogle Scholar
  35. Li L, Qu Z, Jia R, Wang B, Wang Y, Qu D (2017). Excessive input of phosphorus significantly affects microbial Fe(III) reduction in flooded paddy soils by changing the abundances and community structures of Clostridium and Geobacteraceae. Science of the Total Environment, 607–608: 982–991CrossRefGoogle Scholar
  36. Li R, Jiang Y, Xi B, Li M, Meng X, Feng C, Mao X, Liu H, Jiang Y (2018a). Raw hematite based Fe(III) bio-reduction process for humified landfill leachate treatment. Journal of Hazardous Materials, 355: 10–16CrossRefGoogle Scholar
  37. Li X, Huang Y, Liu H W, Wu C, Bi W, Yuan Y, Liu X (2018b). Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge. Journal of Environmental Sciences (China), 64: 42–50CrossRefGoogle Scholar
  38. Li X, Yuan Y, Huang Y, Liu H W, Bi Z, Yuan Y, Yang P B (2018c). A novel method of simultaneous NH4 + and NO3 removal using Fe cycling as a catalyst: Feammox coupled with NAFO. Science of the Total Environment, 631–632: 153–157Google Scholar
  39. Liao Z, Cirpka O A (2011). Shape-free inference of hyporheic traveltime distributions from synthetic conservative and smart tracer tests in streams. Water Resources Research, 47(7): 1–14CrossRefGoogle Scholar
  40. Lin B, Van Verseveld H W, Röling W F M (2002). Microbial aspects of anaerobic BTEX degradation. Biomedical and Environmental Sciences, 15(2): 130–144Google Scholar
  41. Liu C, Kota S, Zachara J M, Fredrickson J K, Brinkman C K (2001). Kinetic analysis of the bacterial reduction of goethite. Environmental Science & Technology, 35(12): 2482–2490CrossRefGoogle Scholar
  42. Liu C, Zachara J M, Foster N S, Strickland J (2007). Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate. Environmental Science & Technology, 41(22): 7730–7735CrossRefGoogle Scholar
  43. Lorah M M, Voytek M A (2004). Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities. Journal of Contaminant Hydrology, 70(1–2): 117–145CrossRefGoogle Scholar
  44. Lovley D R (1995). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. Journal of Industrial Microbiology, 14(2): 85–93CrossRefGoogle Scholar
  45. Lovley D R (2001). Bioremediation. Anaerobes to the rescue. Science, 293(5534): 1444–1446CrossRefGoogle Scholar
  46. Lovley D R, Anderson R T (2000). Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeology Journal, 8(1): 77–88CrossRefGoogle Scholar
  47. Lovley D R, Giovannoni S J, White D C, Champine J E, Phillips E J, Gorby Y A, Goodwin S (1993). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Archives of Microbiology, 159(4): 336–344CrossRefGoogle Scholar
  48. Lovley D R, Holmes D E, Nevin K P (2004). Advances in Microbial Physiology, vol. 49. Poole R K, ed., 219–286Google Scholar
  49. Lovley D R, Phillips E J (1987). Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 53(7): 1536–1540Google Scholar
  50. Lovley D R, Woodward J C, Chapelle F H (1994). Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature, 370(6485): 128–131CrossRefGoogle Scholar
  51. Luu Y S, Ramsay J A (2003). Review: Microbial mechanisms of accessing insoluble Fe(III) as an energy source. World Journal of Microbiology & Biotechnology, 19(2): 215–225CrossRefGoogle Scholar
  52. Ma J, Ma C, Tang J, Zhou S, Zhuang L (2015). Mechanisms and applications of electron shuttle-mediated extracellular electron transfer. Progress in Chemistry, 27(12): 1833–1840 (in Chinese)Google Scholar
  53. Machala L, Tucek J, Zboril R (2011). Polymorphous transformations of nanometric iron(III) oxide: A review. Chemistry of Materials, 23(14): 3255–3272CrossRefGoogle Scholar
  54. Martin T A, Kempton J H (2000). In situ stabilization of metal-contaminated groundwater by hydrous ferric oxide: An experimental and modeling investigation. Environmental Science & Technology, 34(15): 3229–3234CrossRefGoogle Scholar
  55. Mejia J, Roden E E, Ginder-Vogel M (2016). Influence of oxygen and nitrate on Fe (Hydr)oxide mineral transformation and soil microbial communities during redox cycling. Environmental Science & Technology, 50(7): 3580–3588CrossRefGoogle Scholar
  56. Nealson K H, Saffarini D (1994). Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annual Review of Microbiology, 48(1): 311–343CrossRefGoogle Scholar
  57. Netto L E S, Stadtman E R (1996). The iron-catalyzed oxidation of dithiothreitol is a biphasic process: Hydrogen peroxide is involved in the initiation of a free radical chain of reactions. Archives of Biochemistry and Biophysics, 333(1): 233–242CrossRefGoogle Scholar
  58. O’Loughlin E J, Gorski C A, Scherer M M, Boyanov M I, Kemner K M (2010). Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products. Environmental Science & Technology, 44(12): 4570–4576CrossRefGoogle Scholar
  59. Park W, Nam Y, Lee M, Kim T (2009). Anaerobic ammonia-oxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4 +/Fe3+ medium. Biotechnology and Bioprocess Engineering; BBE, 14(5): 680–685CrossRefGoogle Scholar
  60. Puls R W, Blowes D W, Gillham R W (1999). Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. Journal of Hazardous Materials, 68(1–2): 109–124CrossRefGoogle Scholar
  61. Qian F, Wang H, Ling Y, Wang G, Thelen M P, Li Y (2014). Photoenhanced electrochemical interaction between Shewanella and a hematite nanowire photoanode. Nano Letters, 14(6): 3688–3693CrossRefGoogle Scholar
  62. Rayu S, Karpouzas D G, Singh B K (2012). Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation, 23(6): 917–926CrossRefGoogle Scholar
  63. Roden E E, Urrutia M M (2002). Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction. Geomicrobiology Journal, 19(2): 209–251CrossRefGoogle Scholar
  64. Roden E E, Zachara J M (1996). Microbial reduction of crystalline iron (III) oxides: Influence of oxide surface area and potential for cell growth. Environmental Science & Technology, 30(5): 1618–1628CrossRefGoogle Scholar
  65. Savard M M, Paradis D, Somers G, Liao S, Van Bochove E (2007). Winter nitrification contributes to excess NO3 in groundwater of an agricultural region: A dual-isotope study. Water Resources Research, 43(6): 1–10CrossRefGoogle Scholar
  66. Sawayama S (2006). Possibility of anoxic ferric ammonium oxidation. Journal of Bioscience and Bioengineering, 101(1): 70–72CrossRefGoogle Scholar
  67. Scott D T, Mcknight D M, Blunt-Harris E L, Kolesar S E, Lovley D R (1998). Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science & Technology, 32(19): 2984–2989CrossRefGoogle Scholar
  68. Shi Z, Zachara J M, Shi L, Wang Z, Moore D A, Kennedy D W, Fredrickson J K (2012). Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with ferrihydrite and lepidocrocite. Environmental Science & Technology, 46(21): 11644–11652CrossRefGoogle Scholar
  69. Shrestha J, Rich J J, Ehrenfeld J G, Jaffe P R (2009). Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils laboratory, field demonstrations, and push-pull rate determination. Soil Science, 174(3): 156–164CrossRefGoogle Scholar
  70. Thiruvenkatachari R, Vigneswaran S, Naidu R (2008). Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry, 14(2): 145–156CrossRefGoogle Scholar
  71. Tuntoolavest M, Burgos W D (2005). Anaerobic phenol oxidation by Geobacter metallireducens using various electron acceptors. Environmental Engineering Science, 22(4): 421–426CrossRefGoogle Scholar
  72. Utkin I, Woese C, Wiegel J (1994). Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. International Journal of Systematic Bacteriology, 44(4): 612–619CrossRefGoogle Scholar
  73. VanStone N, Przepiora A, Vogan J, Lacrampe-Couloume G, Powers B, Perez E, Mabury S, Sherwood Lollar B (2005). Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis. Journal of Contaminant Hydrology, 78(4): 313–325CrossRefGoogle Scholar
  74. Vogan J L, Focht R M, Clark D K, Graham S L (1999). Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater. Journal of Hazardous Materials, 68(1–2): 97–108CrossRefGoogle Scholar
  75. Weber K A, Achenbach L A, Coates J D (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews. Microbiology, 4(10): 752–764Google Scholar
  76. Yang W H, Weber K A, Silver W L (2012). Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nature Geoscience, 5(8): 538–541CrossRefGoogle Scholar
  77. Yao H, Conrad R, Wassmann R, Neue H U (1999). Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry, 47(3): 269–295CrossRefGoogle Scholar
  78. You Y, Han J, Chiu P C, Jin Y (2005). Removal and inactivation of waterborne viruses using zerovalent iron. Environmental Science & Technology, 39(23): 9263–9269CrossRefGoogle Scholar
  79. Zachara J M, Fredrickson J K, Li S M, Kennedy D W, Smith S C, Gassman P L (1998). Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. American Mineralogist, 83(11–12 Part 2): 1426–1443CrossRefGoogle Scholar
  80. Zboril R, Mashlan M, Petridis D (2002). Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications. Chemistry of Materials, 14(3): 969–982CrossRefGoogle Scholar
  81. Zhang C L, Vali H, Romanek C S, Phelps T J, Liu S V (1998). Formation of single-domain magnetite by a thermophilic bacterium. American Mineralogist, 83(11–12 Part 2): 1409–1418CrossRefGoogle Scholar
  82. Zobrist J, Dowdle P R, Davis J A, Oremland R S (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science & Technology, 34(22): 4747–4753CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  2. 2.State Environmental Protection Key Laboratory of Simulation and Control of Groundwater PollutionChinese Research Academy of Environmental SciencesBeijingChina
  3. 3.Municipal and Environmental Engineering CollegeJilin Jianzhu UniversityChangchunChina
  4. 4.School of Water Resources and EnvironmentChina University of Geosciences (Beijing)BeijingChina

Personalised recommendations