Decontamination of Cr(VI) facilitated formation of persistent free radicals on rice husk derived biochar

  • Kaikai Zhang
  • Peng Sun
  • Yanrong ZhangEmail author
Research Article


This study investigated the facilitation of Cr(VI) decontamination to the formation of persistent free radicals (PFRs) on rice husk derived biochar. It was found that Cr(VI) remediation by biochar facilitated the production of PFRs, which increased with the concentration of treated Cr(VI). However, excessive Cr(VI) would induce their decay. Biochar with high pyrolysis temperature possessed great performance to Cr(VI) removal, which was mainly originated from its reduction by biochar from Inductively Coupled Plasma Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy. And the corresponding generation of PFRs on biochar was primarily ascribed to the oxidization of phenolic hydroxyl groups by Cr(VI) from Fourier Transform Infrared Spectroscopy analysis, which was further verified by the H2O2 treatment experiments. The findings of this study will help to illustrate the transformation of reactive functional groups on biochar and provide a new insight into the role of biochar in environmental remediation.


Biochar Persistent free radicals Phenolic hydroxyl groups Cr(VI) reduction 



This work was supported by International Science & Technology Cooperation Program of China (Nos. 2013DFG50150 and S2016G6292) and the Innovative and Inter disciplinary Team at HUST (No. 2015ZDTD027). The authors thank the Analytical and Testing Center of HUST for the use of EA, FTIR, and XPS equipment.

Supplementary material

11783_2019_1106_MOESM1_ESM.pdf (140 kb)
Supplementary material, approximately 141 KB.


  1. Agrafioti E, Kalderis D, Diamadopoulos E (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management, 133: 309–314CrossRefGoogle Scholar
  2. Atkinson C J, Fitzgerald J D, Hipps N A (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant & Soil, 337(1–2): 1–18CrossRefGoogle Scholar
  3. Beesley L, Moreno-Jiménez E, Gomez-Eyles J L, Harris E, Robinson B, Sizmur T (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental pollution, 159(12): 3269–3282CrossRefGoogle Scholar
  4. Betts A R, Chen N, Hamilton J G, Peak D (2013). Rates and mechanisms of Zn2+ adsorption on a meat and bonemeal biochar. Environmental Science & Technology, 47(24): 14350–14357CrossRefGoogle Scholar
  5. Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007). Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45(8): 629–634CrossRefGoogle Scholar
  6. Chen Z, Xiao X, Chen B, Zhu L (2015). Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. Environmental Science & Technology, 49(1): 309–317CrossRefGoogle Scholar
  7. dela Cruz A L, Cook R L, Dellinger B, Lomnicki S M, Donnelly K C, Kelley M A, Cosgriff D (2014). Assessment of environmentally persistent free radicals in soils and sediments from three Superfund sites. Environmental Science. Processes & Impacts, 16(1): 44–52CrossRefGoogle Scholar
  8. dela Cruz A L, Gehling W, Lomnicki S, Cook R, Dellinger B (2011). Detection of environmentally persistent free radicals at a superfund wood treating site. Environmental Science & Technology, 45(15): 6356–6365CrossRefGoogle Scholar
  9. Dellinger B, Lomnicki S, Khachatryan L, Maskos Z, Hall R W, Adounkpe J, McFerrin C, Truong H (2007). Formation and stabilization of persistent free radicals. Proceedings of the Combustion Institute. International Symposium on Combustion or Proc Combust Inst, 31(1): 521–528CrossRefGoogle Scholar
  10. Dong X, Ma L Q, Gress J, Harris W, Li Y (2014). Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: Important role of dissolved organic matter from biochar. Journal of Hazardous Materials, 267: 62–70CrossRefGoogle Scholar
  11. Fang G, Gao J, Liu C, Dionysiou D D, Wang Y, Zhou D (2014). Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. Environmental Science & Technology, 48(3): 1902–1910CrossRefGoogle Scholar
  12. Gehling W, Dellinger B (2013). Environmentally persistent free radicals and their lifetimes in PM2.5. Environmental Science & Technology, 47(15): 8172–8178CrossRefGoogle Scholar
  13. Gehling W, Khachatryan L, Dellinger B (2014). Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5. Environmental Science & Technology, 48(8): 4266–4272CrossRefGoogle Scholar
  14. Gomez-Eyles J L, Yupanqui C, Beckingham B, Riedel G, Gilmour C, Ghosh U (2013). Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury. Environmental Science & Technology, 47(23): 13721–13729CrossRefGoogle Scholar
  15. Hale S E, Lehmann J, Rutherford D, Zimmerman A R, Bachmann R T, Shitumbanuma V, O’Toole A, Sundqvist K L, Arp H P, Cornelissen G (2012). Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science & Technology, 46(5): 2830–2838CrossRefGoogle Scholar
  16. Jia M, Wang F, Bian Y, Jin X, Song Y, Kengara F O, Xu R, Jiang X (2013). Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresource Technology, 136: 87–93CrossRefGoogle Scholar
  17. Jiang B, Liu Y, Zheng J, Tan M, Wang Z, Wu M (2015). Synergetic transformations of multiple pollutants driven by Cr(VI)-sulfite reactions. Environmental Science & Technology, 49(20): 12363–12371CrossRefGoogle Scholar
  18. Jiang W, Cai Q, Xu W, Yang M, Cai Y, Dionysiou D D, O’Shea K E (2014). Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environmental Science & Technology, 48(14): 8078–8085CrossRefGoogle Scholar
  19. Jin J, Li Y, Zhang J, Wu S, Cao Y, Liang P, Zhang J, Wong M H, Wang M, Shan S, Christie P (2016). Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. Journal of Hazardous Materials, 320: 417–426CrossRefGoogle Scholar
  20. Kelley M A, Hebert V Y, Thibeaux T M, Orchard M A, Hasan F, Cormier S A, Thevenot P T, Lomnicki S M, Varner K J, Dellinger B, Latimer B M, Dugas T R (2013). Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species. Chemical Research in Toxicology, 26(12): 1862–1871CrossRefGoogle Scholar
  21. Khachatryan L, Dellinger B (2011). Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions? Environmental Science & Technology, 45(21): 9232–9239CrossRefGoogle Scholar
  22. Khachatryan L, Vejerano E, Lomnicki S, Dellinger B (2011). Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions. Environmental Science & Technology, 45(19): 8559–8566CrossRefGoogle Scholar
  23. Kiruri L W, Dellinger B, Lomnicki S (2013). Tar balls from Deep Water Horizon oil spill: environmentally persistent free radicals (EPFR) formation during crude weathering. Environmental Science & Technology, 47(9): 4220–4226CrossRefGoogle Scholar
  24. Kiruri L W, Khachatryan L, Dellinger B, Lomnicki S (2014). Effect of copper oxide concentration on the formation and persistency of environmentally persistent free radicals (EPFRs) in particulates. Environmental Science & Technology, 48(4): 2212–2217CrossRefGoogle Scholar
  25. Klüpfel L, Keiluweit M, Kleber M, Sander M (2014). Redox properties of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 48(10): 5601–5611CrossRefGoogle Scholar
  26. Kotas J, Stasicka Z (2000). Chromium occurrence in the environment and methods of its speciation. Environmental pollution, 107(3): 263–283CrossRefGoogle Scholar
  27. Kumar A, Joseph S, Tsechansky L, Privat K, Schreiter I J, Schüth C, Graber E R (2018). Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. The Science of the total environment, 626: 953–961CrossRefGoogle Scholar
  28. Lehmann J, Rillig M C, Thies J, Masiello C A, HockadayWC, Crowley D (2011). Biochar effects on soil biota–A review. Soil Biology and Biochemistry, 43(9): 1812–1836CrossRefGoogle Scholar
  29. Li Y, Ruan G, Jalilov A S, Tarkunde Y R, Fei H, Tour J M (2016). Biochar as a renewable source for high-performance CO2 sorbent. Carbon, 107: 344–351CrossRefGoogle Scholar
  30. Lian F, Xing B (2017). Black Carbon (Biochar) In water/soil environments: Molecular structure, sorption, stability, and potential risk. Environmental Science & Technology, 51(23): 13517–13532CrossRefGoogle Scholar
  31. Liu W J, Jiang H, Yu H Q (2015). Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chemical Reviews, 115(22): 12251–12285CrossRefGoogle Scholar
  32. Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46(3): 854–862CrossRefGoogle Scholar
  33. Mills C T, Bern C R, Wolf R E, Foster A L, Morrison J M, Benzel W M (2017). Modifications to EPA method 3060A to improve extraction of Cr(VI) from chromium ore processing residue-contaminated soils. Environmental Science & Technology, 51(19): 11235–11243CrossRefGoogle Scholar
  34. Mohan D, Sarswat A, Ok Y S, Pittman C U Jr (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresource Technology, 160: 191–202CrossRefGoogle Scholar
  35. Nwosu U G, Roy A, dela Cruz A L, Dellinger B, Cook R (2016). Formation of environmentally persistent free radical (EPFR) in iron (III) cation-exchanged smectite clay. Environmental Science. Processes & Impacts, 18(1): 42–50CrossRefGoogle Scholar
  36. Qin Y, Li G, Gao Y, Zhang L, Ok Y S, An T (2018). Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review. Water Research, 137: 130–143CrossRefGoogle Scholar
  37. Rawal A, Joseph S D, Hook J M, Chia C H, Munroe P R, Donne S, Lin Y, Phelan D, Mitchell D R, Pace B, Horvat J, Webber J B (2016). Mineral-biochar composites: Molecular structure and porosity. Environmental Science & Technology, 50(14): 7706–7714CrossRefGoogle Scholar
  38. Sun H, Hockaday W C, Masiello C A, Zygourakis K (2012). Multiple controls on the chemical and physical structure of biochars. Industrial & Engineering Chemistry Research, 51(9): 3587–3597CrossRefGoogle Scholar
  39. Thompson K A, Shimabuku K K, Kearns J P, Knappe D R, Summers R S, Cook S M (2016). Environmental comparison of biochar and activated carbon for tertiary wastewater treatment. Environmental Science & Technology, 50(20): 11253–11262CrossRefGoogle Scholar
  40. Tong X J, Li J Y, Yuan J H, Xu R K (2011). Adsorption of Cu(II) by biochars generated from three crop straws. Chemical Engineering Journal, 172(2–3): 828–834CrossRefGoogle Scholar
  41. Vejerano E, Lomnicki S, Dellinger B (2012). Lifetime of combustiongenerated environmentally persistent free radicals on Zn(II)O and other transition metal oxides. Journal of environmental monitoring, 14(10): 2803–2806 MCrossRefGoogle Scholar
  42. Vejerano E P, Rao G, Khachatryan L, Cormier S A, Lomnicki S (2018). Environmentally persistent free radicals: Insights on a new class of pollutants. Environmental Science & Technology, 52(5): 2468–2481CrossRefGoogle Scholar
  43. Wang S, Gao B, Li Y, Ok Y S, Shen C, Xue S (2017). Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: A case study of Phytolacca acinosa Roxb. (Phytolaccaceae). Chemosphere, 178: 59–64CrossRefGoogle Scholar
  44. Xiao X, Chen B, Zhu L (2014). Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environmental Science & Technology, 48(6): 3411–3419CrossRefGoogle Scholar
  45. Yang J, Pan B, Li H, Liao S, Zhang D, Wu M, Xing B (2016). Degradation of p-Nitrophenol on biochars: Role of persistent free radicals. Environmental Science & Technology, 50(2): 694–700CrossRefGoogle Scholar
  46. Zhang K, Sun P, Faye M C, Zhang Y (2018). Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation. Carbon, 130: 730–740CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations