Microbial community dynamics at high organic loading rates revealed by pyrosequencing during sugar refinery wastewater treatment in a UASB reactor

  • Liguo Zhang
  • Qiaoying Ban
  • Jianzheng LiEmail author
Research Article
Part of the following topical collections:
  1. Special Issue—Bio-based Technologies for Resource Recovery


The performance and microbial community structure in an upflow anaerobic sludge blanket reactor (UASB) treating sugar refinery wastewater were investigated. The chemical oxygen demand (COD) removal reached above 92.0% at organic loading rates (OLRs) of 12.0–54.0 kgCOD/(m3∙d). The volatile fatty acids (VFAs) in effluent were increased to 451.1 mg/L from 147.9 mg/L and the specific methane production rate improved by 1.2–2.2-fold as the OLR increased. The evolution of microbial communities in anaerobic sludge at three different OLRs was investigated using pyrosequencing. Operational taxonomic units (OTUs) at a 3% distance were 353, 337 and 233 for OLR12, OLR36 and OLR54, respectively. When the OLR was increased to 54.0 kgCOD/(m3∙d) from 12.0 kgCOD/(m3∙d) by stepwise, the microbial community structure were changed significantly. Five genera (Bacteroides, Trichococcus, Chryseobacterium, Longilinea and Aerococcus) were the dominant fermentative bacteria at the OLR 12.0 kgCOD/(m3∙d). However, the sample of OLR36 was dominated by Lactococcus, Trichococcus, Anaeroarcus and Veillonella. At the last stage (OLR = 54.0 kgCOD/(m3∙d)), the diversity and percentage of fermentative bacteria were markedly increased. Apart from fermentative bacteria, an obvious shift was observed in hydrogen-producing acetogens and nonacetotrophic methanogens as OLR increased. Syntrophobacter, Geobacter and Methanomethylovorans were the dominant hydrogen-producing acetogens and methylotrophic methanogens in the samples of OLR12 and OLR36. When the OLR was increased to 54.0 kgCOD/(m3∙d), the main hydrogen-producing acetogens and hydrogenotrophic methanogens were substituted with Desulfovibrio and Methanospirillum. However, the composition of acetotrophic methanogens (Methanosaeta) was relatively stable during the whole operation period of the UASB reactor.


Upflow anaerobic sludge blanket Sugar refinery wastewater Organic loading rate Pyrosequencing Microbial community structure 



This work was supported by the National Natural Science Foundation of China (Nos. 51508316 and 51708341), Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. QA201523), HIT Environment and Ecology Innovation Special Funds (No. HSCJ201614). Research Project for Young Sanjin Scholarship of Shanxi, Program for the Outstanding Innovative Team of Higher Learning Institutions of Shanxi, and Research Fund of Tianjin Key Laboratory of Aquatic Science and Technology (No. TJKLAST-ZD-2016-05).


  1. Amani T, Nosrati M, Mousavi S M (2012). Response surface methodology analysis of anaerobic syntrophic degradation of volatile fatty acids in an upflow anaerobic sludge bed reactor inoculated with enriched cultures. Biotechnol Bioprocess Eng, 17(1): 133–144CrossRefGoogle Scholar
  2. Ambuschi J J, Liu J, Wang H, Shan L, Zhou X, Mohammed M O A, Feng Y (2016). Microbial community structural analysis of an expanded granular sludge bed (EGSB) reactor for beet sugar industrial wastewater treatment. Appl Microbiol Biotechnol, 100 (10): 4651–4661CrossRefGoogle Scholar
  3. Antwi P, Li J, Boadi P O, Meng J, Shi E, Chi X, Zhang Y (2017). Functional bacterial and archaeal diversity revealed by 16S rRNA gene pyrosequencing during potato starch processing wastewater treatment in an UASB. Bioresour Technol, 235: 348–357CrossRefGoogle Scholar
  4. APHA (1995). Standard methods for the examination of water and wastewater. American Public Health AssociationGoogle Scholar
  5. Astals S, Nolla-Ardèvol V, Mata-Alvarez J (2012). Anaerobic codigestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate. Bioresour Technol, 110: 63–70CrossRefGoogle Scholar
  6. Ban Q, Li J, Zhang L, Jha A K, Nies L (2013a). Linking performance with microbial community characteristics in an anaerobic baffled reactor. Appl Biochem Biotechnol, 169(6): 1822–1836CrossRefGoogle Scholar
  7. Ban Q, Li J, Zhang L, Jha A K, Zhang Y (2013b). Quantitative analysis of previously identified propionate-oxidizing bacteria and methanogens at different temperatures in an UASB reactor containing propionate as a sole carbon source. Appl Biochem Biotechnol, 171 (8): 2129–2141CrossRefGoogle Scholar
  8. Betian H G, Linehan B A, Bryant M P, Holdeman L V (1977). Isolation of a Cellulolytic Bacteroides sp. from Human Feces. Appl Environ Microbiol, 33(4): 1009–1010Google Scholar
  9. Bryant M P, Campbell L L, Reddy C A, Crabill M R (1977). Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic Bacteria. Appl Environ Microbiol, 33(5): 1162–1169Google Scholar
  10. Buschhorn H, Durre P, Gottschalk G (1989). Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl Environ Microbiol, 55(7): 1835–1840Google Scholar
  11. Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 7(5): 335–336CrossRefGoogle Scholar
  12. Cha I T, Min U G, Kim S J, Yim K J, Roh S W, Rhee S K (2013). Methanomethylovorans uponensis sp. nov., a methylotrophic methanogen isolated from wetland sediment. Antonie van Leeuwenhoek, 104(6): 1005–1012CrossRefGoogle Scholar
  13. Crawford P A, Crowley J R, Sambandam N, Muegge B D, Costello E K, Hamady M, Knight R, Gordon J I (2009). Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci USA, 106(27): 11276–11281CrossRefGoogle Scholar
  14. Delforno T, Moura A, Okada D, Varesche M (2014). Effect of biomass adaptation to the degradation of anionic surfactants in laundry wastewater using EGSB reactors. Bioresour Technol, 154: 114–121CrossRefGoogle Scholar
  15. Demirel B, Scherer P (2008). The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass methane: A review. Rev in Environ Sci Bio, 7: 173–190CrossRefGoogle Scholar
  16. Díaz C, Baena S, Fardeau M L, Patel B K C (2007). Aminiphilus circumscriptus gen. nov., sp. nov., ananaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor. Int J Syst Evol Microbiol, 57(8): 1914–1918CrossRefGoogle Scholar
  17. Elshahed M S, McInerney M J (2001). Benzoate fermentation by the anaerobic bacterium syntrophus aciditrophicus in the absence of hydrogen-using microorganisms. Appl Environ Microbiol, 67(12): 5520–5525CrossRefGoogle Scholar
  18. Férnandez N, Díaz E E, Amils R, Sanz J L (2008). Analysis of microbial community during biofilm development in an anaerobic wastewater treatment reactor. Microb Ecol, 56(1): 121–136CrossRefGoogle Scholar
  19. Gaur R Z, Khan A A, Suthar S (2017). Effect of thermal pre-treatment on co-digestion of duckweed (Lemna gibba) and waste activated sludge on biogas production. Chemosphere, 174: 754–763CrossRefGoogle Scholar
  20. Grabowski A, Tindall B J, Bardin V, Blanchet D, Jeanthon C (2005). Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int J Syst Evol Microbiol, 55(3): 1113–1121CrossRefGoogle Scholar
  21. Harmsen H J M, van Kuijk B L M, Plugge C M, Akkermans A D L, de Vos W M, Stams A J M (1998). Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate reducing bacterium. Int J Syst Bacteriol, 48(4): 1383–1387CrossRefGoogle Scholar
  22. Hesham A E L, Qi R, Yang M (2011). Comparision of bacterial community structures in two systems of asewage treatment plant using PCR-DGGE analysis. J Environ Sci (China), 23(12): 2049–2054CrossRefGoogle Scholar
  23. Imachi H, Sakai S, Kubota T, Miyazaki M, Saito Y, Takai K (2016). Sedimentibacter acidaminivorans sp. nov., an anaerobic, amino-acid-utilizing bacterium isolated from marine subsurface sediment. Int J Syst Evol Microbiol, 66(3): 1293–1300CrossRefGoogle Scholar
  24. Jiang B, Parshina S N, Van D W, Lomans B P, Stams A J (2005). Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. Int J Syst Evol Microbiol, 55(6): 2465–2470CrossRefGoogle Scholar
  25. Jiang X, Shen J, Han Y, Lou S, Han W, Sun X, Li J, Mu Y, Wang L (2016). Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket: A comprehensive study. Water Res, 88: 257–265CrossRefGoogle Scholar
  26. Ke S, Zhang M, Shi Z, Zhang T, Fang H H P (2008). Phenol degradation and microbial characteristics in upflow anaerobic sludge blanket reactors at ambient and mesophilic temperatures. Int J Environ Pollut, 32(1): 68–77CrossRefGoogle Scholar
  27. Keyser M, Witthuhn R C, Lamprecht C, Coetzee M P A, Britz T J (2006). PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst Appl Microbiol, 29(1): 77–84CrossRefGoogle Scholar
  28. Kim T G, Yun J, Cho K S (2015). The close relation between Lactococcus and Methanosaeta is a keystone for stable methane production from molasses wastewater in a UASB reactor. Appl Microbiol Biotechnol, 99(19): 8271–8283CrossRefGoogle Scholar
  29. Kitahara M, Sakamoto M, Tsuchida S, Kawasumi K, Amao H, Benno Y, Ohkuma M (2013). Parabacteroides chinchillae sp. nov., isolated from chinchilla (Chincilla lanigera) faeces. Int J Syst Evol Microbiol, 63(Pt 9): 3470–3474CrossRefGoogle Scholar
  30. Kovacik Jr W P, Scholten J C M, Culley D, Hickey R, Zhang W, Brockman F J (2010). Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed. Microbiology, 156(8): 2418–2427CrossRefGoogle Scholar
  31. Li J, Li B, Zhu G, Ren N, Bao L, He J (2007). Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int J Hydrogen Energy, 32(15): 3274–3283CrossRefGoogle Scholar
  32. Li X (2014). Nitrogen removal by combined nitritationanammox process in an upflow anaerobic sludge blanket (UASB) reactor. Ames: Iowa State UniversityGoogle Scholar
  33. Liu Y, Whitman W B (2008). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci, 1125(1): 171–189CrossRefGoogle Scholar
  34. Lomans B P, Maas R, Luderer R, Camp H J MO D, Pol A, Van der Drift C, Vogels G D (1999). Isolation and Characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol, 65: 3641–3650Google Scholar
  35. Lu L, Xing D, Ren N (2012). Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Res, 46 (7): 2425–2434CrossRefGoogle Scholar
  36. Moertelmaier C, Li C, Winter J, Gallert C (2014). Fatty acid metabolism and population dynamics in a wet biowaste digester during re-start after revision. Bioresour Technol, 166: 479–484fCrossRefGoogle Scholar
  37. Müller V, Imkamp F, Biegel E, Schmidt S, Dilling S (2008). Discovery of aferredoxin:NAD +-oxidoreductase (Rnf) in Acetobacterium woodii. Ann N Y Acad Sci, 125(1): 137–146CrossRefGoogle Scholar
  38. Niu Q, He S, Zhang Y, Ma H, Liu Y, Li Y Y (2016). Process stability and the recovery control associated with inhibition factors in a UASBanammox reactor with a long-term operation. Bioresour Technol, 203: 132–141CrossRefGoogle Scholar
  39. Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J, 3(6): 700–714CrossRefGoogle Scholar
  40. Shi R, Zhang Y, Yang W, Xu H (2012). Microbial community characterization of an UASB treating increased organic loading rates of vitamin C biosynthesis wastewater. Water Sci Technol, 65(2): 254–261CrossRefGoogle Scholar
  41. Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K (2006). Microbial community of a mesophilic propionatedegrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl Microbiol Biotechnol, 72(2): 401–415CrossRefGoogle Scholar
  42. Stams A J M, Sousa D Z, Kleerebezem R, Plugge C M (2012). Role of syntrophic microbial communities in high-rate methanogenic bioreactors. Water Sci Technol, 66(2): 352–362CrossRefGoogle Scholar
  43. Strepis N, Sánchez-Andrea I, van Gelder A H, van Kruistum H, Shapiro N, Kyrpides N, Göker M, Klenk H P, Schaap P, Stams A J M, Sousa D Z (2016). Description of Trichococcusilyis sp. nov. by combined physiological and in silico genome hybridization analyses. Int J Syst Evol Microbiol, 66(10): 3957–3963CrossRefGoogle Scholar
  44. Summers Z M, Fogarty H E, Leang C, Franks A E, Malvankar N S, Lovley D R (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 330 (6009): 1413–1415CrossRefGoogle Scholar
  45. Uyanik S (2003). Granule development in anaerobic baffled reactor. Turkish Journal of Environenal Science and Engineering, 27: 131–144Google Scholar
  46. Wallrabenstein C, Hauschild E, Schink B (1995). Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol, 164(5): 346–352CrossRefGoogle Scholar
  47. Wang Y, Qian P Y (2009). Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One, 4(10): 1–9Google Scholar
  48. Worm P, Fermoso F G, Lens P N L, Plugge C M (2009). Decreased activity of a propionate degrading community in a UASB reactor fed with synthetic medium without molybdenum, tungsten and selenium. Enzyme Microb Technol, 45(2): 139–145CrossRefGoogle Scholar
  49. Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007). Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol, 57(10): 2299–2306CrossRefGoogle Scholar
  50. Yang Y, Guo J, Hu Z (2013). Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Res, 47(17): 6790–6800CrossRefGoogle Scholar
  51. Yoon J H, Kang S J, Oh T K (2007). Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol, 57(6): 1355–1359CrossRefGoogle Scholar
  52. Zhang J, Cai X, Qi L, Shao C, Lin Y, Zhang J, Zhang Y, Shen P, Wei Y (2015b). Effects of aeration strategy on the evolution of dissolved organic matter (DOM) and microbial community structure during sludge bio-drying. Appl Microbiol Biotechnol, 99(17): 7321–7331CrossRefGoogle Scholar
  53. Zhang T, Shao M, Ye L (2012). 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J, 6(6): 1137–1147CrossRefGoogle Scholar
  54. Zhang Y, Wang X, Hu M, Li P (2015a). Effect of hydraulic retention time (HRT) on the biodegradation of trichloroethylene wastewater and anaerobic bacterial community in the UASB reactor. Appl Microbiol Biotechnol, 99(4): 1977–1987CrossRefGoogle Scholar
  55. Zheng D, Raskin L (2000). Quantification of Methanosaeta species in anaerobic bioreactors using genus-and species-specific hybridization probes. Microb Ecol, 39: 246–262Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Environmental and Resource SciencesShanxi UniversityTaiyuanChina
  2. 2.State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations