Journal of Central South University

, Volume 26, Issue 12, pp 3516–3533 | Cite as

Genesis of Qujiashan manganese deposit, Shaanxi Province: constraints from geological, geochemical, and carbon and oxygen isotopic evidences

  • Zi-yong Wang (王子勇)
  • Run-sheng Han (韩润生)
  • Tao Ren (任涛)Email author
  • Yong-tao Wu (吴永涛)
  • Hu-jie Li (李虎杰)


The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a high-grade w(MnO)=8.92% to 18.76%) manganese deposit with low-phosphorus w(P2O5)=0.08% to 0.16%) content. It also has a low total REEs contents (with an average of 101.3×10−6), and has inconspicuous Ce (0.81 to 1.29) and Eu (1.00 to 1.25) anomalies. lg(Ce/Ce*) values are from −0.02 to 0.11. The ores have high SiO2/Al2O3 and Al/(Al + Fe + Mn) ratios. In figures of Fe−Mn−[(Ni+Cu+Co)×10] and lgU−lgTh, all samples show that hydrothermal exhalative fluids played an important role during mineralisation. The δ13CPDB and δ18OSMOW values of eight ore samples are from −20.7‰ to −8.2‰ (with an average of −12.4%) and from 14.3‰ to 18.7‰ (with an average of 17.0‰), respectively. These carbon and oxygen isotopic features indicate that hydrothermal fluids derived from deep earth are participation in the metallogenic process, which is also supported by high paleo-seawater temperatures varying from 47.08 to 73.98 °C. Therefore, the geological and geochemical evidences show that the Qujiashan deposit formed from submarine exhalative hydrothermal sedimentation.

Key words

manganese deposit element geochemistry carbon and oxygen isotopes genesis Qujiashan manganese deposit 

陕西屈家山锰矿床成因研究:来自地质、地球化学和C−O 同位素的证据


屈家山锰矿床位于扬子地块北缘龙门-大巴山褶皱带内,矿体赋存于上震旦统陡山沱组 第三岩性段紫红色钙质页岩中,呈层状、似层状产出。赋矿地层中见火山岩和硅质岩等,同时 见大量黄铁矿和少量菱铁矿。锰矿石中MnO 含量介于 8.92%~18.76%, P2O5 含量介于 0.08%∼0.16%, 为低磷、高品位锰矿床。矿石的稀土总量较低(平均为 101.3×10−6), 轻、重稀土分馏不明显,中稀土 略微富集,基本无 Eu ((平均值为1.12)和Ce(平均值为1.09)异常,lg(Ce /Ce≜) 值为−0.02~0.11。矿石中 S 与 Al2O3 呈负相关关系,而与 MnO 呈正相关关系,表明S 可能来源于海底喷流热液,同时矿石具 有较高的 SiO2/Al2O3 比值(4.8~9.6)和较低的Al/(Al+Fe+Mn)比值(0.1~0.27),在Fe−Mn−(Ni+Cu+Co)×10 和lgU−lgTh 图解上,所有样品落入古热水沉积区域反映海底喷流热液参与成矿。矿石中TiO2、 SiO2、 TFe2O3 与 Al2O3 表现为正相关关系, MnO 与 Al2O3、TiO2、SiO2 表现出负相关关系,表明可能 有少量陆源物质的输入。矿石中 δ13CPDBδ18OSMOW 值分别为−20.7‰~−8.2‰(平均为−12.4‰) 和 14.3‰~18.7‰ (平均为17.0‰),根据氧同位素外部计温法估算出该矿床形成时古海水温度为47.08~73.98 °C,表明深部流体参与了成矿。综合矿床地质和地球化学特征,本研究认为该矿床为海底喷流 热液成因。


锰矿床 元素地球化学 C−O 同位素 矿床成因 屈家山锰矿 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to Mr XIE Xin-guo and Mr PU Zheng-wu for helping with field work, and Dr. ZHOU Jia-xi for helping with trace element, carbon and oxygen isotope analyses.


  1. [1]
    FRAKES L A, BOLTON B R. Effects of ocean chemistry, sea level, and climate on the formation of primary sedimentary manganese ore deposits [J]. Economic Geology, 1992, 87(5): 1207–1217.CrossRefGoogle Scholar
  2. [2]
    WANG Er-chie, MENG Qing-ren, BURCHFIEL B C, ZHANG Guo-wei. Mesozoic large-scale lateral extrusion, rotation, and uplift of the Tongbai-Dabie Shan belt in East China [J]. Geology, 2003, 31(4): 307–310.CrossRefGoogle Scholar
  3. [3]
    LI Ren-wei, ZHANG Shu-kun, LEI Jia-jin, SHEN Yan-an, CHEN Jin-shi, CHU Xue-lei. Temporal and spacial variation in δ34S values of pyrite from Sinian strata discussion on relationship between Yangtze Block and the Late Proterozoic supercontinent [J]. Chinese Journal of Geology, 1996, 31(3): 209–217. (in Chinese)Google Scholar
  4. [4]
    MENG Qing-ren, ZHANG Guo-wei. Geologic framework and tectonic evolution of the Qinling orogen, Central China [J]. Tectonophysics, 2000, 323(3, 4): 183–196.CrossRefGoogle Scholar
  5. [5]
    CHEN Yan-jing, ZHANG Jing, ZHANG Fu-xin, PIRAJNO F, LI Chao. Carlin and Carlin-like gold deposits in Western Qinling mountains and their metallogenic time, tectonic setting and model [J]. Geological Review, 2004, 50(2): 134–152. (in Chinese)Google Scholar
  6. [6]
    MAO Shi-dong, CHEN Yan-jing, ZHOU Zhen-ju, LU Ying-huai. U-Pb ages of detrital zircon grains from the Donghe group in the Southern Qinling Microcontinent: implications for tectonic evolution [J]. Acta Petrologica Sinica, 2013, 29(1): 67–82. (in Chinese)Google Scholar
  7. [7]
    QI Liang, HU Jing, GREGOIRE D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry [J]. Talanta, 2000, 51(3): 507–513.CrossRefGoogle Scholar
  8. [8]
    WANG Zhong-gang, YU Xue-yuan, ZHAO Zhen-hua. Rare earth element geochemistry [M]. Beijing: Science Press, 1989. (in Chinese)Google Scholar
  9. [9]
    GUO Yu, LI Yu-sheng, LING Yun, ZHANG Huai-guo, HOU Yuan-jun. The sedimentary geochemical characteristics and metallogenic mechanism of manganese-bearing rock series in Southeastern Chongqing, China [J]. Acta Geologica Sinica, 2018, 92(11): 2331–2348. (in Chinese)Google Scholar
  10. [10]
    MCLENNAN S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes [C]// LIPIN B R, MCKAY G A. Reviews in Mineralogy. Washington DC: Mineralogical Society of America, 1989, 21 (1): 169–200.Google Scholar
  11. [11]
    SHI Fu-qiang, ZHU Xiang-kun, YAN Bin, LIU Yan-qun, ZHANG Fei-fei, ZHAO Ni-na, CHU Ming-kai. Geochemical characteristics and metallogenic mechanism of the Xiangtan manganese ore deposit in Hunan Province [J]. Acta Petrologica et Mineralogica, 2016, 35(3): 443–456. (in Chinese)Google Scholar
  12. [12]
    XIAO Jia-fei, HE Jing-yang, YANG Hai-ying, WU Cheng-quan. Comparison between Datangpo-type manganese ores and modern marine ferromanganese oxyhydroxide precipitates based on rare earth elements [J]. Ore Geology Reviews, 2017, 89: 290–308.CrossRefGoogle Scholar
  13. [13]
    YANG Rui-dong, GAO Jun-bo, CHENG Ma-li, WEI Huai-rui, XU Li-qun, WEN Xue-feng, WEI Xiao. Sediment geochemical character of manganese deposit of Datangpo stage, Neoproterozoic in Gaozeng, Congjiang county, Guizhou Province, China [J]. Acta Geologica Sinica, 2010, 84(12): 1781–1790. (in Chinese)Google Scholar
  14. [14]
    ALIBO D S, NOZAKI Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation [J]. Geochimica et Cosmochimica Acta, 1999, 63(3, 4): 363–372.CrossRefGoogle Scholar
  15. [15]
    CAI Yi-hua. The mechanisms of growth and element of enrichment of Co-rich crusts from Pacific seamounts [D]. Xiamen: Xiamen University, 2002. (in Chinese)Google Scholar
  16. [16]
    TAYLOR S R, MCLENAN S M. The continental crust: its composition and evolution [M]. Oxford: Blackwell Scientific Publications, 1985.Google Scholar
  17. [17]
    KATO Y, KANO T, KUNUGIZA K. Negative Ce anomaly in the Indian banded iron Formations: evidence for the emergence of oxygenated deep-sea at 2.9-2.7 Ga [J]. Resource Geology, 2002, 52(2): 101–l10.CrossRefGoogle Scholar
  18. [18]
    JEWELL P W, STALLARD R F. Geochemistry and paleoceanographic setting of central, Nevada bedded barites [J]. Journal of Geology, 1991, 99(2): 151–170.CrossRefGoogle Scholar
  19. [19]
    BOSTROM K. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits [C]// RONA P A. Hydrothermal Processes at Seafloor Spreading Centers. New York: Plenum Press, 1983, 473–489.CrossRefGoogle Scholar
  20. [20]
    PAN Jia-yong, ZHANG Qian, MA Dong-sheng, LI Chao-yang. Siliceous rocks’ characteristic and its relationship with mineralization of the Yangla copper deposit in Western Yunnan [J]. Science in China (Series D), 2001, 31(1): 10–16. (in Chinese)Google Scholar
  21. [21]
    FU Qun-he. The geological and geochemical characteristics of Taojiang-type manganese deposits [J]. Hunan Geology, 2001, 20(1): 15–20. (in Chinese)Google Scholar
  22. [22]
    SMITH P A, CRONAN D S. The geochemistry of metalliferous sediments and waters associated with shallow submarine hydrothermal activity (Santorini, Aegean Sea) [J]. Chemical Geology, 1983, 39(3): 241–262.CrossRefGoogle Scholar
  23. [23]
    PETER J M, SCOTT S D. Mineralogy, composition, and fluidinclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California [J]. Canadian Mineralogist, 1988, 26: 567–587.Google Scholar
  24. [24]
    HESS J, BENDER M L, SCHILLING J. Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present [J]. Science, 1986, 231(4741): 979–984.CrossRefGoogle Scholar
  25. [25]
    VEIZER J, HOLSER W T, WILGUS C K. Correlation of 13C/12C and 34S/32S secular variations [J]. Geochimica et Cosmochimica Acta, 1980, 44: 579–587.CrossRefGoogle Scholar
  26. [26]
    WEN Chun-qi, DUO Ji. The research method of ore deposits [M]. Beijing: Science and Technology Press, 2009. (in Chinese)Google Scholar
  27. [27]
    OKITA P M, MAYNARD J B, SPIKER E C, FORCE E R. Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore [J]. Geochimica et Cosmochimica Acta, 1988, 52(11): 2679–2685.CrossRefGoogle Scholar
  28. [28]
    BLANK J G, DELANEY J R, MARAIS D J D. The concentration and isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge, Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1993, 57(4): 875.CrossRefGoogle Scholar
  29. [29]
    EXLEY R A, MATTEY D P, CLAGUE D A, PILLINGER C T. Carbon isotope systematics of a mantle “hotspot”: a comparison of Loihi seamount and MORB glasses [J]. Earth and Planetary Science Letters, 1986, 78(2, 3): 189–199.CrossRefGoogle Scholar
  30. [30]
    TRYLOR H P. Igneous rocks: II. Isotopic case studies of circum Pacific magmatism [C]// VALLEY J W, TAYLOR H P, O’NEIL J R. Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy and Geochemistry. 1986, 16(1): 273–317.Google Scholar
  31. [31]
    HOU Dong-zhuang, WU Xiang-bin, LI Zhen, LIU Yu-hong. Ore-forming material sources of Dahebian barite deposit in Tianzhu county, Guizhou Province, China [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(4): 1039–1048. (in Chinese)Google Scholar
  32. [32]
    VEIZER J, ALA D, AZMY K, BRUCKSCHEN P, BUHL D, BRUHN F, CARDEN G A F, DIENER A, EBNETH S, GODDERIS Y, JASPER T, KORTE C, PAWELLEK F, PODLAHA O G, STRAUSS H. 87Sr/86Sr, δS13C and δS18O evolution of Phanerozoic seawater [J]. Chemical Geology, 1999, 161(1–3): 59–88.CrossRefGoogle Scholar
  33. [33]
    BANNER J L. Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy [J]. Earth Science Reviews, 2004, 65(3): 141–194.CrossRefGoogle Scholar
  34. [34]
    CHEN Yan-jing, LIU Cong-qiang, CHEN Hua-yong, ZHANG Zeng-jie, LI Chao. Carbon isotope geochemistry of graphite deposits and ore-bearing khondalite series in North China: implications for several geoscientific problems [J]. Acta Petrologica Sinica, 2000, 16(2): 233–244. (in Chinese)Google Scholar
  35. [35]
    CRERAR D A, NAMSUN J, CHYI M S, WILLIAMS L, FEIGENSON M D. Manganiferous cherts of the Franciscan assemblage; I, general geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centers [J]. Economic Geology, 1982, 77(3): 519–540.CrossRefGoogle Scholar
  36. [36]
    FRANCOIS R. A study on the regulation of some trace metals (Rb, Sr, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet sediments, British Columbia, Canada [J]. Marine Geology, 1988, 83(1): 285–308.CrossRefGoogle Scholar
  37. [37]
    RUSSELL A D, MORFORD J L. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia [J]. Marine Geology, 2001, 174(1–4): 341–354.CrossRefGoogle Scholar
  38. [38]
    WERNE J P, LYONS T W, HOLLANDER D J, FORMOLO M J, DAMSTE J S S. Reduced sulfur in euxinic sediments of the Cariaco Basin: Sulfur isotope constraints on organic sulfur formation [J]. Chemical Geology, 2003, 195(1–4): 159–179.CrossRefGoogle Scholar
  39. [39]
    LYONS T W, WERNE J P, HOLLANDER D J, MURRAY R W. Contrasting sulfur geochemisty and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela [J]. Chemical Geology, 2003, 195(1–4): 131–157.CrossRefGoogle Scholar
  40. [40]
    RIBOULLEAU A, BAUDIN F, DECONICK J F, DERENNE S, LARGEAU C, TRIBOVILLARD N. Depositional conditions and organic matter preservation pathways in an epicontinental environment: The upper Jurassic Kashpir oil shales (Volga basin, Russia) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197(3, 4): 171–197.CrossRefGoogle Scholar
  41. [41]
    TRIBOVILLARD N, ALGEO T J, LYONS T, RIBOULLEAU A. Trace metals as paleoredox and paleoproductivity proxies: An update [J]. Chemical Geology, 2006, 232(1, 2): 12–32.CrossRefGoogle Scholar
  42. [42]
    MCLENNAN S M, TAYLOR S R. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends [J]. The Journal of Geology, 1991, 99(1): 1–21.CrossRefGoogle Scholar
  43. [43]
    WU Cheng-quan, ZHANG Zheng-wei, XIAO Jian-fei, FU Ya-zhou, SHAO Shu-xun, ZHENG Chao-fei, YAO Jun-hua, XIAO Chao-yi. Nanhuan manganese deposits within restricted basins of the southeastern Yangtze Platform, China: constraints from geological and geochemical evidence [J]. Ore Geology Reviews, 2016, 75: 76–99.CrossRefGoogle Scholar
  44. [44]
    JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111(1–4): 111–129.CrossRefGoogle Scholar
  45. [45]
    KIMURA H, WATANABE Y. Ocean anoxia at the Precambrian-Cambrian boundary [J]. Geology, 2001, 29(11): 995–998.CrossRefGoogle Scholar
  46. [46]
    WIGNALL P B, TWITCHETT R J. Oceanic anoxia and the end Permian mass extinction [J]. Science, 1996, 272(5265): 1155–1158.CrossRefGoogle Scholar
  47. [47]
    DAS S K, ROUTH J, ROYCHOUDHURY A N, KLUMP J V, RANJAN R K. Phosphorus dynamics in shallow eutrophic lakes: an example from Zeekoevlei, South Africa [J]. Hydrobiologia, 2009, 619(1): 55–66.CrossRefGoogle Scholar
  48. [48]
    ALGEO T J, ROWE H. Paleoceanographic applications of trace-metal concentration data [J]. Chemical Geology, 2012, 299(324, 325): 6–18.CrossRefGoogle Scholar
  49. [49]
    LU Zun-li, LING Hong-fei, ZHOU Feng, JIANG Shao-yong, CHEN Xiao-ming, ZHOU Huai-yang. Variation of the Fe/Mn ratio of ferromanganese crusts from the Central North Pacific: Implication for paleoclimate changes [J]. Progress in Natural Science, 2005, 15(6): 530–537.CrossRefGoogle Scholar
  50. [50]
    ZHANG Fei-fei, YAN Bin, GUO Yue-lin, ZHU Xiang-kun, ZHOU Qi, YANG De-zhi. Precipitation form of manganese ore deposits in Gucheng, Hubei Province, and its paleoenvironment implication [J]. Acta Geologica Sinica, 2013, 87(2): 245–258. (in Chinese)Google Scholar
  51. [51]
    ZHU Xiang-kun, PENG Qian-yun, ZHANG Ren-biao, AN Zheng-ze, ZHANG Fei-fei, YAN Bin, LI Jin, GAO Zhao-fu, QIN Ying, PAN Wen. Geological and geochemical characteristics of the Daotuo super-large manganese ore deposit at Songtao Country in Guizhou Province [J]. Acta Geologica Sinica, 2013, 87(9): 1335–1348. (in Chinese)Google Scholar
  52. [52]
    CHENG Yong-sheng. Petrogenesis of skarn in Shizhuyuan W-polymetallic deposit, southern Hunan, China: Constraints from petrology, mineralogy and geochemistry [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1676–1687.CrossRefGoogle Scholar
  53. [53]
    LIAO Shi-li, CHEN Shou-yu, ZHANG Li-ya, HUANG Jian-han, DENG Xiao-hu, LI Pei. Geochemistry and its geological significance of gold deposits in ductile shear zone of Qingmuchuan-Cangshe area, Shaanxi [J]. Journal of Central South University: Science and Technology, 2015, 46(3): 1082–1093. (in Chinese)Google Scholar
  54. [54]
    SVERJENSKY D A. Europium redox equilibria in aqueous solution [J]. Earth and Planetary Science Letters, 1984, 67(1): 70–78.CrossRefGoogle Scholar
  55. [55]
    BIERLEIN F P. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium [J]. Chemical Geology, 1991, 93(3, 4): 219–230.Google Scholar
  56. [56]
    TAO Shi-long, LAI Jian-qing, ZHANG Jian-dong, QIAN Li-hua, HU Li-fang, CAO Rong, YOU Fei, HUANG Chong, LI Liao-hui, HUANG Rui, LIANG Chong-gao. Geochemical characteristics of auriferous pyrite in Longtoushan gold deposit, Guangxi Province, China [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1263–1279. (in Chinese)Google Scholar
  57. [57]
    NOTHDURFT L D, WEBB G E, KAMBER B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones [J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263–283.CrossRefGoogle Scholar
  58. [58]
    TANAKA K, TANI Y, TAKAHASHI Y, TANIMIZU M, SUZUKI Y, KOZAI N, OHNUKI T. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2 [J]. Geochimica et Cosmochimica Acta, 2010, 74(19): 5463–5477.CrossRefGoogle Scholar
  59. [59]
    XIONG Zhi-fang, LI Tie-gang, ALGEO T, CHANG Feng-ming, YIN Xue-bo, XU Zhao-kai. Rare earth element geochemistry of laminated diatom mats from tropical West Pacific: Evidence for more reducing bottomwaters and higher primary productivity during the last glacial maximum [J]. Chemical Geology, 2012, 296–297: 103–118.CrossRefGoogle Scholar
  60. [60]
    JIANG Xue-jun, LIN Xue-hui, YAO De, GUO Wei-dong. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts [J]. Science China Earth Sciences, 2011, 41(2): 197–204. (in Chinese)CrossRefGoogle Scholar
  61. [61]
    ELDERFIELD H, GREAVES M J. The rare earth elements in seawater [J]. Nature, 1982, 296(5854): 214–219.CrossRefGoogle Scholar
  62. [62]
    BAU M, DULSKI P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J]. Precambrian Research, 1996, 79(1, 2): 37–55.CrossRefGoogle Scholar
  63. [63]
    SHIELDS G, STILLE P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites [J]. Chemical Geology, 2001, 175(1, 2): 29–48.CrossRefGoogle Scholar
  64. [64]
    WRIGHT J, SCHRADER H, HOLSER W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite [J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 631–644.CrossRefGoogle Scholar
  65. [65]
    LING Hong-fei, FENG Hong-zhen, PAN Jia-yong, JIANG Shao-yong, CHEN Yong-quan, CHEN Xi. Carbon isotope variation through the Neoproterozoic Doushantuo and Dengying Formations, South China: Implications for chemostratigraphy and paleoenvironmental change [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1): 158–174.CrossRefGoogle Scholar
  66. [66]
    LU Miao, ZHU Mao-yan, ZHANG Jun-ming, SHIELD A, LI Guo-xiang, ZHAO Fang-cheng, ZHAO Xin, ZHAO Mei-juan. The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin [J]. Precambrian Research, 2013, 225: 86–109.CrossRefGoogle Scholar
  67. [67]
    WANG Xin-qiang, JIANG Gan-qing, SHI Xiao-ying, XIAO Shu-hai. Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China [J]. Precambrian Research, 2016, 273: 53–66.CrossRefGoogle Scholar
  68. [68]
    ANSARI A H, PANDEY S K, SHARMA M, AGRAWAL S, KUMAR Y. Carbon and oxygen isotope stratigraphy of the Ediacaran Bilara Group, Marwar Supergroup, India: Evidence for high amplitude carbon isotopic negative excursions [J]. Precambrian Research, 2018, 308: 75–91.CrossRefGoogle Scholar
  69. [69]
    GAO Yun-pei, ZHANG Xiao-lin, ZHANG Gui-jie, CHEN Ke-fan, SHEN Yan-an. Ediacaran negative C-isotopic excursions associated with phosphogenic events: Evidence from South China [J]. Precambrian Research, 2018, 307: 218–228.CrossRefGoogle Scholar
  70. [70]
    SHACKLETON N J, KENNETT J P. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP sites 277, 279 and 281 [J]. Initial Reports of the Deep Sea Drilling Project, 1976, 29: 743–755.Google Scholar
  71. [71]
    TANG Shi-yu. Isotope geological study of manganese deposit in Minle area, Hunan Province [J]. Acta Sedimentologica Sinica, 1990, 8(4): 77–84. (in Chinese)Google Scholar
  72. [72]
    HEIN J R, KOSCHINSKY A, HALBACH P E, MANHEIM F T, BAU M, KANG J K, LUBICK N. Iron and manganese oxide mineralization in the Pacific [C]// NICHOLSON K, HEIN J R, BUHN B, DASGUPTA S. Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. London: Geological Society Special Publication, 1997: 123–138.Google Scholar
  73. [73]
    XIE Jian-cheng, SUN Wei-dong, DU Jian-guo, XU Wei, WU Li-bing, YANG Xiao-yong, ZHOU Tao-fa. Geochemical studies on Permian manganese deposits in Guichi, Eastern China: implications for their origin and formative environments [J]. Journal of Asian Earth Sciences, 2013, 74: 155–166.CrossRefGoogle Scholar
  74. [74]
    FENG Jin-liang. Behaviour of rare earth elements and yttrium in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa over dolomite during chemical weathering [J]. Chemical Geology, 2010, 271(3, 4): 112–132.CrossRefGoogle Scholar
  75. [75]
    PRAKASH L S, RAR D, PAROPKARI A L, MUDHOLKAR A V, SATYANARAYANAN M, SREENIVAS B, CHANDRASEKHARAM D, KOTA D, RAJU K A K, KAISARY S, BALARAM V, GURAV T. Distribution of REEs and yttrium among major geochemical phases of marine Fe-Mn-oxides: Comparative study between hydrogenous and hydrothermal deposits [J]. Chemical Geology, 2012, 312–313(3): 127–137.CrossRefGoogle Scholar
  76. [76]
    OKITA P M, MAYNARD J B, SPIKER E C, FORCE E R. Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore [J]. Geochimica et Cosmochimica Acta, 1988, 52(11): 2679–2685.CrossRefGoogle Scholar
  77. [77]
    HEIN J R, GIBBS A E, CLAGUE D, TORRESAN M. Hydrothermal mineralization along submarine rift zones, Hawaii [J]. Marine Georesources and Geotechnology, 1996, 14(2): 177–203.CrossRefGoogle Scholar
  78. [78]
    WANG Hong-wei, WEN Xing-ping, CHANG Hai-liang, LIU Can, LI Lin-qiang. Characteristics of carbon and oxygen isotope in Heqing manganese deposit, Yunnan, China [J]. Geoscience, 2013, 27(3): 612–620. (in Chinese).Google Scholar
  79. [79]
    LI Qi-lai, YI Hai-sheng, XIA Guo-qing, JI Chang-jun, JIN Feng. Characteristics and implication of carbon and oxygen isotope in Ga-rich manganese-bearing rock series in Dongping, Guangxi Province [J]. Earth Science, 2017, 42(9): 1508–1518. (in Chinese)Google Scholar
  80. [80]
    XIE Jian-cheng, DU Jian-guo, XU Wei, YANG Xiao-yong. The geological and geochemical characteristics of manganese-bearing sequences of Guichi, Anhui Province, East China [J]. Geological Review, 2006, 52(3): 396–408. (in Chinese)Google Scholar
  81. [81]
    QIN Yuan-kui, ZHANG Hua-cheng, YAO Jing-qu. Geochemical characteristics and geological implication of the Xialei manganese depost, Daxin county, Guangxi [J]. Geological Review, 2010, 56(5): 664–672. (in Chinese)Google Scholar
  82. [82]
    ZHU Shou-quan. Characteristics of Taojiang-type hydrothermal sedimentary manganese deposits [J]. Geological Review, 1996, 42(5): 397. (in Chinese)Google Scholar
  83. [83]
    HE Zhi-wei, YANG Rui-dong, GAO Jun-bo, CHENG Wei, HUANG Jian-guo. Geological and geochemical characteristics of manganese-bearing rock series of Yangjiawan manganese deposit, Songtao county, Guizhou Province [J]. Geoscience, 2013, 27(3): 593–602. (in Chinese)Google Scholar
  84. [84]
    QIN Ying, WANG Jia-wu, LI Dai-ping, JIANG Tian-rui. Geological and geochemical characteristics of the Nanhuaian manganese deposits in Southeastern Guizhou Province [J]. Geology and Prospecting, 2013, 49(6): 1060–1069. (in Chinese)Google Scholar
  85. [85]
    FAN De-lian, HUANG Jin-shui, XU Dong-yu. Research on geology and geocheemistry of manganese deposte [M]. Beijing: China Meteorological Press, 1994. (in Chinese)Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Land Resource EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.College of Environment and ResourceSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations