Journal of Central South University

, Volume 26, Issue 12, pp 3457–3469 | Cite as

Zircon U-Pb-Hf isotopes and mineral chemistry of Early Cretaceous granodiorite in the Lunggar iron deposit in central Lhasa, Tibet Y, China

  • Yun-hui Zhang (张云辉)
  • Yang-shuang Wang (王杨双)
  • Wen-shu Wang (王文澍)
  • Jie Liu (刘洁)
  • Ling-ling Yuan (袁玲玲)Email author


The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau. In the Lunggar deposit, iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone. In this study, we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite. Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca. 119 Ma. Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite, the Early Cretaceous granodiorite was believed to form under condition of high temperature (>700 °C), low pressure (100–400 MPa), and relatively high oxygen fugacity (lg/O2)(−13.6 to −13.9) and H2O content (4%–8%). Zircon trace elements, Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite. The relatively high log/O2 and shallow magma chamber are beneficial for skarn iron mineralization, implying remarkable potential for further prospecting in the Lunggar iron deposit.

Key words

zircon U-Pb-Hf isotope mineral chemistry crystallization condition Lunggar iron deposit central Lhasa 

西藏中拉萨地块隆格尔铁矿床含矿花岗闪长岩锆石U-Pb-Hf 同位素和 矿物化学组分研究


隆格尔铁矿床隶属班公湖-怒江成矿带,位于青藏高原的中拉萨地块内。在隆格尔矿床中,铁 矿化发育于早白垩系花岗闪长岩和晚二叠系下拉组灰岩的矽卡岩化接触带上。本文报道了地早白垩系 花岗闪长岩(119 Ma)的锆石U-Pb-Hf 同位素和矿物化学组分特征。基于锆石微量元素和角闪石、黑云 母的化学组分,计算了岩体形成时的压力、温度、氧逸度和水成分。结果显示,早白垩系花岗闪长岩 形成于高温(>700 °C)、低压(100−100 MPa)、高氧逸度(−13.6∼−13.9)的环境中。锆石Hf 同位素和黑云 母化学组分显示,花岗闪长岩中有明显年轻幔源成分混入。较高的氧逸度和浅的形成环境有利于铁矿 化的形成,说明隆格尔铁矿床具有较好的找矿潜力。


锆石U-Pb-Hf 同位素 矿物化学组分 结晶环境 隆格尔铁矿床 中拉萨 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ZHANG Y H, CAO H W, HOLLIS S P, TANG L, XU M, JIANG J S, GAO S B, WANG Y S. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Paleogene gabbro and granite from Central Lhasa, southern Tibet: Petrogenesis and tectonic implications [J]. International Geology Review, 2019, 61(7): 868–894.CrossRefGoogle Scholar
  2. [2]
    ZHENG Y C, FU Q, HOU Z Q, YANG Z S, HUANG K X, WU C D, SUN Q Z. Metallogeny of the northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa terrane, southern Tibet [J]. Ore Geology Reviews, 2015, 70: 510–532.CrossRefGoogle Scholar
  3. [3]
    HOU Z Q, DUAN L F, LU Y J, ZHENG Y C, ZHU D C, YANG Z M, YANG Z S, WANG B D, PEI Y R, ZHAO Z D, MCCUAIG T C. Lithospheric Architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen [J]. Economic Geology, 2015, 110(6): 1541–1575.CrossRefGoogle Scholar
  4. [4]
    WANG R, WEINBERG R F, COLLINS W J, RICHARDS J P, ZHU D C. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet [J]. Earth-Science Reviews, 2018, 181: 122–143.CrossRefGoogle Scholar
  5. [5]
    SUN X, ZHENG Y Y, XU J, HUANG L H, GUO F, GAO S B. Metallogenesis and ore controls of Cenozoic porphyry Mo deposits in the gangdese belt of Southern Tibet [J]. Ore Geology Reviews, 2017, 81: 996–1014.CrossRefGoogle Scholar
  6. [6]
    DUAN J J, TANG J X, LIN B. Zinc and lead isotope signatures of the Zhaxikang PbZn deposit, South Tibet: Implications for the source of the ore-forming metals [J]. Ore Geology Reviews, 2016, 78: 58–68.CrossRefGoogle Scholar
  7. [7]
    CAO H W, HUANG Y, LI G M, ZHANG L K, WU J Y, DONG L, DAI Z W, LU L. Late Triassic sedimentary records in the northern Tethyan Himalaya: Tectonic link with Greater India [J]. Geoscience Frontiers, 2018, 9(1): 273–291.CrossRefGoogle Scholar
  8. [8]
    CAO H W, ZHANG Y H, SANSTOSH M, LI G M, HOLLIS S P, ZHANG L K, PEI Q M, TANG L, DUAN Z M. Petrogenesis and metallogenic implications of Cretaceous magmatism in Central Lhasa, Tibetan Plateau: A case study from the Lunggar Fe skarn deposit and perspective review [J]. Geological Journal, 2019, 54(4): 2323–2346.CrossRefGoogle Scholar
  9. [9]
    FEI F, YANG Z S, LIU Y C, ZHAO X Y, YU Y S. Petrogenetic epoch of the rock mass in the Lunggar iron deposit of Coqen County, Tibet [J]. Acta Petrologica et Mineralogica, 2015, 34: 568–580. (in Chinese)Google Scholar
  10. [10]
    PAN G T, WANG L Q, Li R S, YUAN S H, JI W H, YIN F G, ZHANG W P, WANG B D. Tectonic evolution of the Qinghai-Tibet Plateau [J]. Journal of Asian Earth Sciences, 2012, 53: 3–14.CrossRefGoogle Scholar
  11. [11]
    ZHU D C, ZHAO Z D, Niu Y L, MO X X, CHUNG S L, HOU Z Q, WANG L Q, WU F Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth [J]. Earth and Planetary Science Letters, 2011, 301(1, 2): 241–255.CrossRefGoogle Scholar
  12. [12]
    FOSTER M D. Interpretation of the composition of trioctahedral micas [J]. Geological Survey Professional Paper, 1960, 354: 11–49.Google Scholar
  13. [13]
    LEAKE B E, WOOLLEY A R, BIRCH W D, ERNST A J, FERRARIS G, GRICE J D, HAWTHORNE F C, KISCH H J, KRIVOVICHEV V G, SCUMACHER J C, STEPHENSON N C N, WHITTAKER E J W. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s 1997 recommendations [J]. The Canadian Mineralogist, 2003, 41(6): 1355–1362.CrossRefGoogle Scholar
  14. [14]
    WIEDENBECK M, HANCHAR J M, PECK W H. Further characterisation of the 91500 zircon crystal [J]. Geostandards and Geoanalytical Research, 2004, 1: 9–39.CrossRefGoogle Scholar
  15. [15]
    LIU Y S, HU Z C, ZONG K Q, GAO C G, GAO S, XU J, CHEN H H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS [J]. Chinese Science Bulletin, 2010, 55(15): 1535–1546.CrossRefGoogle Scholar
  16. [16]
    GAO Y, WEI R H, MA P X, HOU Z Q, YANG Z S. Post-collisional ultrapotassic volcanism in the Tangra Yumco-Xuruco graben, south Tibet: Constraints from geochemistry and Sr-Nd-Pb isotope [J]. Lithos, 2009, 110(1–4): 129–139.CrossRefGoogle Scholar
  17. [17]
    HOU K J, LI Y H, ZOU T R, QU X M, SHI Y R, XIE G Q. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications: Acta Petrologica Sinica, 2007, 23: 2595–2604. (in Chinese)Google Scholar
  18. [18]
    ELHLOU S, BELOUSOVA E, GRIFFIN W L, PEARSON W L, O’REiLLY S Y. Trace element and isotopic composition of GJ-red zircon standard by laser ablation [J]. Geochimica et Cosmochimica Acta, 2006, 70(18, Supplement): A158.CrossRefGoogle Scholar
  19. [19]
    CORFU F, HANCHAR J M, HOSKIN P W, KINNY P. Atlas of zircon textures [J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 469–500.CrossRefGoogle Scholar
  20. [20]
    BLICHERT-TOFT J, ALBAREDE F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system [J]. Earth and Planetary Science Letters, 1997, 148(1): 243–258.CrossRefGoogle Scholar
  21. [21]
    GRIFFIN W L, PEARSON N J, BELOUSOVA E, JACKSON S E, van ACHTERBERGH E, O’REILLY S Y, SHEE S R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites-Kimberlites and related rocks [J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133–147.CrossRefGoogle Scholar
  22. [22]
    SÖDERLUND U, JONATHAN P P, VERVOORT J D, ISACHSEN C E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions [J]. Earth and Planetary Science Letters, 2004, 219(3, 4): 311–324.CrossRefGoogle Scholar
  23. [23]
    HOSKIN P W. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia [J]. Geochimica Et Cosmochimica Acta, 2005, 69: 637–648.CrossRefGoogle Scholar
  24. [24]
    WANG Q, ZHU D C, ZHAO Z D, GUAN Q, ZHANG X Q, SUI Q L, MO X X. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study [J]. Journal of Asian Earth Sciences, 2012, 53: 59–66.CrossRefGoogle Scholar
  25. [25]
    GRIMES C B, WOODEN J L, CHEADLE M J, JOHN B E. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon [J]. Contributions to Mineralogy and Petrology, 2015, 170: 1–26.CrossRefGoogle Scholar
  26. [26]
    ESFAHANI M M, KHALILI M, BAKHSHI M. Petrogenesis of Soheyle-Pakuh and Golshekanan granitoid based on mineral chemistry of ferromagnesian minerals (north of Nain), Iran [J]. Journal of African Earth Sciences, 2017, 129: 973–986.CrossRefGoogle Scholar
  27. [27]
    LI X W, MO X X, SCHELTENS M, GUAN Q. Mineral chemistry and crystallization conditions of the Late Cretaceous Mamba pluton from the eastern Gangdese, Southern Tibetan Plateau [J]. Journal of Earth Science, 2016, 27(4): 545–570.CrossRefGoogle Scholar
  28. [28]
    ZHANG J Q, LI S R, SANTOSH M, WANG J Z, LI Q. Mineral chemistry of high-Mg diorites and skarn in the Han-Xing Iron deposits of South Taihang Mountains, China: Constraints on mineralization process [J]. Ore Geology Reviews, 2015, 64: 200–214.CrossRefGoogle Scholar
  29. [29]
    CAO H W, ZHANG Y H, SANTOSH M, ZHANG S T, TANG L, PEI Q M. Mineralogy, zircon U-Pb-Hf isotopes, and whole-rock geochemistry of Late Cretaceous-Eocene granites from the Tengchong terrane, western Yunnan, China: Record of the closure of the Neo-Tethyan Ocean [J]. Geological Journal, 2018, 53(4): 1423–1441.CrossRefGoogle Scholar
  30. [30]
    RIDOLFI F, RENZULLI A, PUERINI M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes [J]. Contributions to Mineralogy and Petrology, 2010, 1: 45–66.CrossRefGoogle Scholar
  31. [31]
    HENRY D J, GUIDOTTI C V, THOMSON J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms [J]. American Mineralogist, 2005, 2: 316–328.CrossRefGoogle Scholar
  32. [32]
    CHEN G Y, SUN D S, ZHOU X R, SHAO W, GONG R T, SHAO Y. Genetic mineralogy and gold mineralization of Guojialing granodiorite in Jiaodong region [M]. China University of Geosciences Press, 1993: 107–140. (in Chinese)Google Scholar
  33. [33]
    ANDERSON J L, SMITH D R. The effects of temperature and fo2 on the Al-in-hornblende barometer [J]. American Mineralogist, 1995, 5–6: 549.CrossRefGoogle Scholar
  34. [34]
    TRAIL D, WATSON E B, TAILBY N D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere [J]. Nature, 2011, 480: 79–82.CrossRefGoogle Scholar
  35. [35]
    WONES D, EUGSTER H. Stability of biotite-Experiment theory and application [J]. American mineralogist, 1965, 9: 1228.Google Scholar
  36. [36]
    RICHARDS J P. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny [J]. Lithos, 2015, 233: 27–45.CrossRefGoogle Scholar
  37. [37]
    ZHOU Z X. The origin of instrusive mass in Fengshadong, Hubei Province [J]. Acta Petrologica Sinica, 1986, 2: 59–70. (in Chinese)Google Scholar
  38. [38]
    ABDELRAHMAN A. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas [J]. Journal of Petrology, 1994, 35(2): 1025–1029.Google Scholar
  39. [39]
    PIRAJNO F. Hydrothermal Processes and Mineral Systems [M]. Berlin: Springer. 2009.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geoscience and Info-physicsCentral South UniversityChangshaChina
  2. 2.Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong UniversityChengduChina
  3. 3.State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Environment and Civil EngineeringChengdu University of TechnologyChengduChina

Personalised recommendations