Journal of Central South University

, Volume 26, Issue 8, pp 2281–2294 | Cite as

Hybrid ToA and IMU indoor localization system by various algorithms

  • Xue-chen Chen (陈雪晨)Email author
  • Sheng Chu (楚盛)
  • Fan Li (李繁)
  • Guang Chu (楚广)
Article Thermal and power engineering


In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.

Key words

indoor localization time of arrival (ToA) inertial measurement unit (IMU) Bayesian filter extended Kalman filter MAP algorithm 



将惯性导航系统和无线传感网进行结合以提高室内定位的精度。惯性导航系统的关键装置为惯 性测量装置, 其用于测量附着的移动物体的加速度和旋转角。附着在移动目标上的传感器会通过时间 到达法测量与事先放置的锚节点之间的距离。同时将加速度、旋转角和与锚节点之间的距离这些信息 也被传到服务器终端以建立状态转移模型和观察模型, 从而可以应用各种回归贝叶斯算法以实时估计 出移动目标的位置。本文共提出应用三种回归贝叶斯算法。实验表明, 这三种算法不仅不需要移动目 标必须以匀速移动, 而且均在定位精度方面优于单独的ToA 定位方法和单独的步行者航位推算方法。 而其中的两种方法可以用于以任何形式的轨迹曲线移动的目标定位, 也就是不需要受到如下限制, 两 个连续的定位时间点之间通过的轨迹必须是直线。


室内定位 基于到达时间的测距法定位 贝叶斯滤波器 扩展卡尔曼滤波器 最大后验概率 算法 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    MAINETTI L, PATRONO L, SERGI I. A survey on indoor positioning systems [C]// IEEE International Conference on Software, Telecommunications and Computer Networks. Split, Croatia: Sep, 2014.CrossRefGoogle Scholar
  2. [2]
    LIU H, DARABI H, BANERJEE P, LIU J. Survey of wireless indoor positioning techniques and systems [J]. IEEE Transactions on Systems, Man, and Cybernetics: Part C (Applications and Reviews), 2017, 37(6): 1067–1080.CrossRefGoogle Scholar
  3. [3]
    MOSES R L, KRISHNAMURTHY D, PATTERSON R M. A self-localization method for wireless sensor networks [J]. EURASIP Journal on Advances in Signal Processing, 2003, 17(4): 839–843.zbMATHGoogle Scholar
  4. [4]
    KIM S, CHONG J W. An efficient TDoA-based localization algorithm without synchronization between base stations [J]. International Journal of Distributed Sensor Networks, 2015, 11(9): 832351. DOI: Scholar
  5. [5]
    HUANG Y, ZHENG J, XIAO Y, PENG M. Robust localization algorithm based on the RSSI ranging scope [J]. International Journal of Distributed Sensor Networks, 2015, 11(2): 587318. DOI: Scholar
  6. [6]
    ZHOU B, CHEN Q, XIAO P. The error propagation analysis of the received signal strength-based simultaneous localization and tracking in wireless sensor networks [J]. IEEE Transactions on Information Theory, 2017, 63(6): 3983–4007.MathSciNetCrossRefGoogle Scholar
  7. [7]
    NICULESCU D, NATH B. Ad hoc positioning system (APS) using AOA [C]// Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE, 2003, 3: 1734–1743.Google Scholar
  8. [8]
    SINGH M, BHOI S K, KHILAR P M. Geometric constraint-based range-free localization scheme for wireless sensor networks [J]. IEEE Sensors Journal, 2017, 17(16): 5350–5366.CrossRefGoogle Scholar
  9. [9]
    CHINTAKUNTA H, KRIM H. Divide and conquer: Localization coverage holes in sensor networks [C]// Proceedings of the 7th Annual IEEE Communications Society Conference on Sensor, Mesh and AdHoc Communications and Networks (SECON). Boston, USA, 2010: 1–8.Google Scholar
  10. [10]
    COLLIN J, MEZENTSEV O, LACHAPELLE G. Indoor positioning system using accelerometry and high accuracy heading sensors [C]// Proc of ION GPS/GNSS 2003 Conference. 2003: 9–12.Google Scholar
  11. [11]
    JIN Y, MOTANI M, SOH W S, ZHANG J. SparseTrack: Enhancing indoor pedestrian tracking with sparse infrastructure support [C]// INFOCOM, 2010 Proceedings IEEE. IEEE, 2010: 1–9.Google Scholar
  12. [12]
    RUIZ A R J, GRANJA F S, HONORATO J C P, ROSASJ I G. Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements [J]. IEEE Transactions on Instrumentation and measurement, 2012, 61(1): 178–189.CrossRefGoogle Scholar
  13. [13]
    LEE S, KIM B, KIM H, HA R, CHA H. Inertial sensor-based indoor pedestrian localization with minimum 802.15. 4a configuration [J]. IEEE Transactions on Industrial Informatics, 2011, 7(3): 455–466.CrossRefGoogle Scholar
  14. [14]
    WANG H, LENZ H, SZABO A, BAMBERGER J, HANEBECK U D. WLAN-based pedestrian tracking using particle filters and low-cost MEMS sensors [C]// Positioning, Navigation and Communications, 2007. WPNC'07. 4th Workshop on. IEEE, 2007: 1–7.Google Scholar
  15. [15]
    RAI A, CHINTALAPUDI K K, PADMANABHAN V N, SEN R. Zee: Zero-effort crowdsourcing for indoor localization [C]// Proceedings of the 18th Annual International Conference on Mobile Computing and networking. ACM, 2012: 293–304.Google Scholar
  16. [16]
    LATEGAHN J, MULLER M, ROHRIG C. Extended Kalman filter for a low cost TDoA/IMU pedestrian localization system [C]// Positioning, Navigation and Communication (WPNC), 2014 11th Workshop on. IEEE, 2014: 1–6.Google Scholar
  17. [17]
    HU W Y, LU J L, JIANG S, SHU W, WU M Y. WiBEST: A hybrid personal indoor positioning system [C]// Wireless Communications and Networking Conference (WCNC), 2013 IEEE. IEEE, 2013: 2149–2154.Google Scholar
  18. [18]
    CHEN X, SONG S, XING J. A ToA/IMU indoor positioning system by extended Kalman filter, particle filter and MAP algorithms [C]// Personal, Indoor, and Mobile Radio Communications (PIMRC), 2016 IEEE 27th Annual International Symposium on. IEEE, 2016: 1–7.Google Scholar
  19. [19]
    MEMSIC Inc. DMU380ZA series user’s manual [M]. 2014.Google Scholar
  20. [20]
    KALMAN R E. A new approach to linear filtering and prediction problems [J]. Journal of basic Engineering, 1960, 82(1): 35–45.MathSciNetCrossRefGoogle Scholar
  21. [21]
    JAZWINSKI A H. Stochastic processes and filtering theory [M]. Courier Corporation, 2007.Google Scholar
  22. [22]
    ARULAMPALAM M S, MASKELL S, GORDON N, CLAPP T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on signal Processing, 2002, 50(2): 174–188.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronics and Information TechnologySun Yat-Sen UniversityGuangzhouChina
  2. 2.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina

Personalised recommendations