Advertisement

Journal of Central South University

, Volume 26, Issue 8, pp 2272–2280 | Cite as

Soft measurement model on torque of alternating current electrical dynamometer including copper loss and iron loss

  • Ding-qing Zhong (钟定清)Email author
  • Ai-lun Wang (王艾伦)
  • Qian He (何谦)
Article Thermal and power engineering
  • 10 Downloads

Abstract

Alternating current electrical dynamometer is a common device to measure the torque of engines, such as the gasoline engine. In order to solve the problems such as high cost, high energy consumption and complicated measurement system which exists in the direct measurement on the torque of alternating current electrical dynamometer, copper loss and iron loss are taken as two key factors and a soft-sensing model on the torque of alternating current electrical dynamometer is established using the fuzzy least square support vector machine (FLS-SVM). Then, the FLS-SVM parameters such as penalty factor and kernel parameter are optimized by adaptive genetic algorithm, torque soft-sensing is investigated in the alternating current electrical dynamometer, as well as the energy feedback efficiency and energy consumption during the measurement phase of a gasoline engine loading continual test is obtained. The results show that the minimum soft-sensing error of torque is about 0.0018, and it fluctuates within a range from −0.3 to 0.3 N-m. FLS-SVM soft-sensing method can increase by 1.6% power generation feedback compared with direct measurement, and it can save 500 kJ fuel consumption in the gasoline engine loading continual test. Therefore, the estimation accuracy of the soft measurement model on the torque of alternating current electrical dynamometer including copper loss and iron loss is high and this indirect measurement method can be feasible to reduce production cost of the alternating current electrical dynamometer and energy consumption during the torque measurement phase of a gasoline engine, replacing the direct method of torque measurement.

Key words

torque fuzzy theory least square support vector machine alternating current electrical dynamometer 

含铜损和铁损交流电力测功机的扭矩软测量模型

摘要

交流电力测功机是测量发动机转矩的常用仪器设备。针对交流电力测功机扭矩直接测量中存在 的问题, 如成本高、能耗高、测量系统复杂等, 以铜损和铁损为两个主要因素, 利用模糊最小二乘支 持向量机(FLS-SVM)建立了交流电力测功机的扭矩软测量模型。然后, 采用自适应遗传算法对 FLS-SVM 的惩罚因子和核参数进行优化, 将扭矩软测量模型应用于交流电力测功机中, 并与其他软 测量模型和直接测量进行比较和分析, 得到了汽油机连续负载试验测量阶段的能量反馈效率和能耗。 结果表明, FLS-SVM 软测量扭矩的最小软测量误差约为0.0018, 在−0.3~0.3 N·m 范围内波动, 比直 接测量法提高了1.6%的能量反馈效率, 并在汽油机连续负载试验中节省了500 kJ 的油耗。因此, 含 铜损、铁损的交流电力测功机扭矩软测量模型的测量精度较高, 这种间接测量方法可替代直接扭矩测 量方法, 并降低交流电力测功机的生产成本和能耗。

关键词

扭矩 模糊理论 最小二乘支持向量机 交流电力测功机 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    AKPOLAT Z H, ASHER G M, Arellano-PADILLA J. A test bed for the experimental validation of position control algorithms [J]. Control Engineering Practice, 2004, 12(12): 933–943. DOI: 10.1016/j.conengprac.2003.10.008.CrossRefGoogle Scholar
  2. [2]
    ZHU C L, WANG Y Z, HOU L W. Design and simulation of electrical dynamometer using improved DTC induction motor driver [J]. Journal of Central South University, 2017, 24(24): 1360–1368. DOI: CNKI:SUN:ZNGY.0.2017-06-015.CrossRefGoogle Scholar
  3. [3]
    TOPOLNICKI J, SKOCZYLAS N. Low cost high sensitivity dynamometer [J]. Measurement, 2011, 44(44): 74–79. DOI: 10.1016/j.measurement.2010.09.033.CrossRefGoogle Scholar
  4. [4]
    E J Q, LIU G L, ZHANG Z Q, HAN D D, CHEN J W, WEI K X, GONG J K, YIN Z B. Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model [J]. Applied Energy, 2019, 243: 321–335. DOI: 10.1016/ j.apenergy.2019.03.204.CrossRefGoogle Scholar
  5. [5]
    E J Q, ZHAO X H, QIU L S, ZHANG Z Q, WEI K X, HAN D D, DENG Y W. Experimental investigation on performance and economy characteristics of a diesel engine with variable nozzle turbocharger and its application in urban bus [J]. Energy Conversion and Management, 2019, 193: 149–161. DOI: 10.1016/j.enconman.2019.04.062.CrossRefGoogle Scholar
  6. [6]
    E J Q, ZHAO X H, XIE L F, ZHANG B, CHEN J W, ZUO Q S, HAN D D, HU W Y, ZHANG Z Q. Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory [J]. Energy, 2019, 169: 719–729. DOI: 10.1016/ j.energy.2018.12.086.CrossRefGoogle Scholar
  7. [7]
    ZUO Q, ZHU X, LIU Z, ZHANG J, WU G, LI Y Prediction of the performance and emissions of a spark ignition engine fueled with butanol-gasoline blends based on support vector regression [J]. Environmental Progress & Sustainable Energy, 2019, 38(38): UNSPel3042. DOI: 10.1002/ep. 13042.Google Scholar
  8. [8]
    ZHANG B, E J Q, GONG J, YUAN W, ZUO W, LI Y, FU J. Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process [J]. Applied Energy, 2016, 181: 14–28. DOI: 10.1016/ j.apenergy.2016.08.051.CrossRefGoogle Scholar
  9. [9]
    WU G, LU Z, PAN W, GUAN Y, LI S, JI C. Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater [J]. Applied Energy, 2019, 239: 331–342. DOI: 10.1016/j.apenergy.2019.01.133.CrossRefGoogle Scholar
  10. [10]
    YUAN W H, GONG J K, E J Q, YUAN F Q. Fuzzy control strategy for CJD alternating current electrodynamometer [J]. Journal of Xiangtan University: Natural Science, 2006, 28(28): 103–106. DOI: 10.1016/ S1872-1508(06)60066-l. (in Chinese)Google Scholar
  11. [11]
    KULJANIC E, SORTINO M, TOTIS G. Multisensor approaches for chatter detection in milling [J]. Journal of Sound and Vibration, 2008, 312(4,5): 20 672–693. DOI: 10.1016/j.jsv.2007.11.006.CrossRefGoogle Scholar
  12. [12]
    WOO L Y, GLASS R S, NOVAK R F, VISSER J H. Diesel engine dynamometer testing of impedancemetric NO* sensors [J]. Sensors and Actuators B: Chemical, 2011, 157(157): 115–121. DOI: 10.1016/j.snb.2011.03.034.CrossRefGoogle Scholar
  13. [13]
    LI Y, TANG W, CHEN Y, LIU J, LEE C F. Potential of acetone-butanol-ethanol (ABE) as a biofuel [J]. Fuel, 2019, 242: 673–686. DOI: 10.1016/j.fuel.2019.01.063.CrossRefGoogle Scholar
  14. [14]
    WU G, LU Z, XU X, PAN W, WU W, LI J, CI J. Numerical investigation of aeroacoustics damping performance of a Helmholtz resonator: Effects of geometry, grazing and bias flow [J]. Aerospace Science and Technology, 2019, 86: 191–203. DOI: 10.1016/j.ast.2019.01.007.CrossRefGoogle Scholar
  15. [15]
    ZHAO X H, E J Q, WU G, DENG Y W, HAN D D, ZHANG B, ZHANG Z Q. A review of studies using graphenes in energy conversion, energy storage and heat transfer development [J]. Energy Conversion and Management, 2019, 184: 581–599. DOI: 10.1016/j.enconman.2019.01.092.CrossRefGoogle Scholar
  16. [16]
    ZUO H Y, LIU G L, E J Q, ZUO W, WEI K X, HU W Y, TAN J Q, ZHONG D Q. Catastrophic analysis on the stability of a large dish solar thermal power generation system with wind-induced vibration [J]. Solar Energy, 2019, 183: 40–49. DOI: 10.1016/j.solener.2019.03.003.CrossRefGoogle Scholar
  17. [17]
    E J Q, LIU G L, LIU T, ZHANG Z Q, ZUO H Y, HU W Y, WEI K X. Harmonic response analysis of a large dish solar thermal power generation system with wind-induced vibration [J]. Solar Energy, 2019, 181: 116–129. DOI: 10.1016/j.solener.2019.01.089.CrossRefGoogle Scholar
  18. [18]
    E J Q, LI Y Q, GONG J K. Function chain neural network prediction on heat transfer performance of oscillating heat pipe based on grey relational analysis [J]. Journal of Central South University of Technology, 2011, 18(18): 1733–1737. DOI: 10.1007/sll771-011-0895-z.Google Scholar
  19. [19]
    ZUO H Y, LUO Z Q, GUAN J L, WANG Y W. Identification on rock and soil parameters for vibration drilling rock in metal mine based on fuzzy least square support vector machine [J]. Journal of Central South University, 2014, 21(21): 1085–1090. DOI: 10.1007/sll771-014-2040-2.CrossRefGoogle Scholar
  20. [20]
    WANG T S, ZUO H Y Fuzzy least squares support vector machines soft measurement model based on adaptive mutative scale chaos immune algorithm [J]. Journal of Central South University, 2014, 21(21): 593–599. DOI: 10.1007/sll771-014-1978-4.CrossRefGoogle Scholar
  21. [21]
    E J Q, QIAN C, ZHU H, PENG Q G, ZUO W, LIU G L. Parameter-identification investigations on the hysteretic Preisach model improved by the fuzzy least square support vector machine based on adaptive variable chaos immune algorithm [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2017, 36(36): 227–242. DOI: 10.1177/0263092317719634.Google Scholar
  22. [22]
    HAO Z, ZHAO H L, ZHANG C, WANG H, JIANG Y Z, YI Z Y. Estimating winter wheat area based on an SVM and the variable fuzzy set method [J]. Remote Sensing Letters, 2019, 10(10): 343–352. DOI: 10.1080/2150704X.2018.1552811.CrossRefGoogle Scholar
  23. [23]
    ROY A, LASKAR R H. Fuzzy SVM based fuzzy adaptive filter for denoising impulse noise from color images [J]. Multimedia Tools and Applications, 2019, 78(78): 1785–1804. DOI: 10.1007/sll042-018-6303-z.CrossRefGoogle Scholar
  24. [24]
    MANOHAR L, GANESAN K. Diagnosis of schizophrenia disorder in MPR brain images using multi-objective BPSO based feature selection with fuzzy SVM [J]. Journal of Medical and Biological Engineering, 2018, 38(38): 917–932. DOI: 10.1007/s40846-017-0355-9.CrossRefGoogle Scholar
  25. [25]
    ZHOU X L, JIANG P Y, WANG X X. Recognition of control chart patterns using fuzzy SVM with a hybrid kernel function [J]. Journal of Intelligent Manufacturing, 2018, 29(29): 51–67. DOI: 10.1007/sl0845-015-1089-6.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical and Electrical EngineeringCentral South UniversityChangshaChina
  2. 2.School of Mechanical EngineeringHunan Institute of EngineeringXiangtanChina

Personalised recommendations