Advertisement

Journal of Central South University

, Volume 26, Issue 8, pp 2234–2243 | Cite as

Evaluation of working fluids for organic Rankine cycles using group-contribution methods and second-law-based models

  • Wei-wu Ma (马卫武)
  • Lin Wang (王琳)
  • Tao Liu (刘韬)
  • Min Li (李旻)Email author
Article Thermal and power engineering
  • 30 Downloads

Abstract

The group-contribution (GC) methods suffer from a limitation concerning to the prediction of process-related indexes, e.g., thermal efficiency. Recently developed analytical models for thermal efficiency of organic Rankine cycles (ORCs) provide a possibility of overcoming the limitation of the GC methods because these models formulate thermal efficiency as functions of key thermal properties. Using these analytical relations together with GC methods, more than 60 organic fluids are screened for medium-low temperature ORCs. The results indicate that the GC methods can estimate thermal properties with acceptable accuracy (mean relative errors are 4.45%–11.50%); the precision, however, is low because the relative errors can vary from less than 0.1% to 45.0%. By contrast, the GC-based estimation of thermal efficiency has better accuracy and precision. The relative errors in thermal efficiency have an arithmetic mean of about 2.9% and fall within the range of 0–24.0%. These findings suggest that the analytical equations provide not only a direct way of estimating thermal efficiency but an accurate and precise approach to evaluating working fluids and guiding computer-aided molecular design of new fluids for ORCs using GC methods.

Key words

organic Rankine cycles (ORCs) group contribution methods working fluids property estimation computer-aided molecular design 

基于基团贡献法和热力学第二定律模型对有机朗肯循环(ORCs)工质的评估

摘要

基团贡献(GC)法一般用于预测有机物的热力学属性参数, 但对过程指标的预测能力有限, 如热 力循环过程的效率。本文发展了一种结合GC 法和有机朗肯循环(ORC)热效率解析模型的方法, 可以 高效快速地估算有机朗肯循环的热效率, 从而在某种程度上克服GC 方法的局限性。利用GC 法与ORC 热效率解析模型, 筛选了60 多种用于中低温有机朗肯循环的有机工质。首先, 运用GC 方法预测了 60 多种有机工质的临界温度Tc, 临界压力Pc, 潜热r, 液体的定压比热容c 等热力学属性。其次, 基 于由热力学第二定律推得的ORC 解析模型, 可直接由GC 法预测的热力学参数直接确定ORC 的输出 功wout 和热效率η 等性能指标。计算结果表明, 与NIST 数据相比, 本文采用的GC 模型具有足够的 精度来估算热力学参数(Tc, Pc, r, c, wout, η 的平均相对误差分别为4.45%, 9.29%, 5.85%, 11.5%, 10.8%, 2.9%)。其中热效率的平均相对误差最小(约为2.9%), 且所有预测值的误差在0~24%的范围内。 本研究表明GC 方法与ORC 解析模型结合, 不仅提供了一种估算热效率的直接方法(无需状态方程), 并且提供了一种快速准确的方法来评估有机工质的热力学性能。本文研究成果也为指导基于GC 法的 ORC 有机工质计算机辅助设计提供借鉴。

关键词

有机朗肯循环 基团贡献法 工质 属性估算 计算机辅助设计 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    YANG M H, YEH R H. Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine [J]. Applied Energy, 2015, 149: 1–12. DOI: 10.1016/ j.apenergy.2015.03.083.CrossRefGoogle Scholar
  2. [2]
    TCHANCHE B F, LAMBRINOS G, FRANGOUDAKIS A, PAPADAKIS G. Low-grade heat conversion into power using organic Rankine cycles-A review of various applications [J]. Renewable and Sustainable Energy Reviews, 2011, 15: 3963–3979. DOI: 10.1016/j.rser.2011.07.024.CrossRefGoogle Scholar
  3. [3]
    CHEN H, GOSWAMI D Y, STEFANAKOS E K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat [J]. Renewable and Sustainable Energy Reviews, 2010, 14: 3059–3067. DOI: 10.1016/ j.rser.2010.07.006.CrossRefGoogle Scholar
  4. [4]
    SHU Ge-qun, LIU Li-na, TIAN Hua, WEI Hai-qiao, YU Guo-peng. Parametric and working fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery [J]. Applied Energy, 2014, 113: 1188–1198. DOI: 10.1016/j.apenergy.2013.08.027.CrossRefGoogle Scholar
  5. [5]
    SALEH B, KOGLBAUER G, WENDLAND M, FISCHER J. Working fluids for low-temperature organic Rankine cycles [J]. Energy, 2007, 32: 1210–1221. DOI: 10.1016/ j.energy.2006.07.001.CrossRefGoogle Scholar
  6. [6]
    QUOILIN S, DECLAYE S, TCHANCHE B F, LEMORT V. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles [J]. Applied Thermal Engineering, 2011, 31: 2885–2893. DOI: 10.1016/j.applthermaleng. 2011.05.014.CrossRefGoogle Scholar
  7. [7]
    TOFFOLO A, LAZZARETTO A, MANENTE G, PACI M. A multi-criteria approach for the optimal selection of working fluid and design parameters in organic Rankine cycle systems [J]. Applied Energy, 2014, 121: 219–232. DOI: 10.1016/j.apenergy.2014.01.089.CrossRefGoogle Scholar
  8. [8]
    MIKIELEWICZ D, MIKIELEWICZ J. A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP [J]. Applied Thermal Engineering, 2010, 30: 2357–2362. DOI: 10.1016/j.applthermaleng.2010.05.035.CrossRefGoogle Scholar
  9. [9]
    SARKAR J. Property-based selection criteria of low GWP working fluids for organic Rankine cycle [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39: 1419–1428. DOI: 10.1007/s40430-016-0605-8.CrossRefGoogle Scholar
  10. [10]
    LAI N A, WENDLAND M, FISCHER J. Working fluids for high-temperature organic Rankine cycles [J]. Energy, 2011, 36: 199–211. DOI: 10.1016/j.energy.2006.07.001.CrossRefGoogle Scholar
  11. [11]
    BARBIERI E S, MORINI M, PINELLI M. Development of a model for the simulation of organic Rankine cycles based on group contribution techniques [C]// ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. 2011, 3: 1011–1019. DOI: 10.1115/GT2011-45616.CrossRefGoogle Scholar
  12. [12]
    BROWN J S, BRIGNOLI R, DAUBMAN S. Methodology for estimating thermodynamic parameters and performance of working fluids for organic Rankine cycles [J]. Energy, 2014, 73: 818–828. DOI: 10.1016/j.energy.2014.06.088.CrossRefGoogle Scholar
  13. [13]
    BRIGNOLI R, BROWN J S. Organic Rankine cycle model for well-described and not-so-well-described working fluids [J]. Energy, 2015, 86: 93–104. DOI: 10.1016/j.energy.2015.03.119.CrossRefGoogle Scholar
  14. [14]
    PAPADOPOULOS A I, STIJEPOVIC M, LINKE P. On the systematic design and selection of optimal working fluids for organic Rankine cycles [J]. Applied Thermal Engineering, 2010, 30: 760–769. DOI: 10.1016/j.applthermaleng.2009.12.006.CrossRefGoogle Scholar
  15. [15]
    PAPADOPOULOS A I, STIJEPOVIC M, LINKE P, SEFERLIS P, VOUTETAKIS S. Power generation from low enthalpy geothermal fields by design and selection of efficient working fluids for organic rankine cycles [J]. Chemical Engineering Transactions, 2010, 21: 61–66. DOI: 10.3303/CET10210011.Google Scholar
  16. [16]
    SU Wen, LI Zhao, DENG Shuai. Developing a performance evaluation model of organic Rankine cycle for working fluids based on the group contribution method [J]. Energy Conversion and Management, 2017, 132: 307–315. DOI: 10.1016/j.enconman.2016.11.040.CrossRefGoogle Scholar
  17. [17]
    SU Wen, LI Zhao, DENG Shuai. Simultaneous working fluids design and cycle optimization for organic Rankine cycle using group contribution model [J]. Applied Energy, 2017, 202: 618–627. DOI: 10.1016/j.apenergy.2017.03.133.CrossRefGoogle Scholar
  18. [18]
    MARTIN T, WHITE O A, ANDREW J. Haslam, CHRISTOS N, MARKIDES C N. Industrial waste-heat recovery through integrated computer-aided working-fluid and ORC system optimization using SAFT-y Mie [J]. Energy Conversion and Management, 2017, 150: 851–869. DOI: 10.1016/j.enconman.2017.03.048.CrossRefGoogle Scholar
  19. [19]
    WHITE M T, OYEWUNMI O A, CHATZOPOULOU M A, PANTALEO A M, HASLAM A J, MARKIDES C N. Computer-aided working-fluid design, thermodynamic optimization and thermos-economic assessment of ORC systems for waste-heat recovery [J]. Energy, 2018, 161: 1181–1198. DOI: 10.1016/j.energy.2018.07.098.CrossRefGoogle Scholar
  20. [20]
    OYEWUNMI O A, TALEB A I, HASLAM A J, MARKIDES C N. On the use of SAFT-VR Mie for assessing large-glide fluorocarbon working-fluid mixtures in organic Rankine cycles [J]. Applied Energy, 2016, 163: 263–282. DOI: 10.1016/j.apenergy.2015.10.040.CrossRefGoogle Scholar
  21. [21]
    HUKKERIKAR A S, SARUP B, KATE A T, ABILDSKOV J, SIN G, GAM R. Group-contribution+(GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis [J]. Fluid Phase Equilibria, 2012, 321: 25–43. DOI: 10.1016/j.fluid. 2012.02.010.CrossRefGoogle Scholar
  22. [22]
    SU Wen, ZHAO Li, DENG Shuai. Group contribution methods in thermodynamic cycles: Physical properties estimation of pure working fluids [J]. Renewable and Sustainable Energy Reviews, 2017, 79: 984–1001. DOI: 10.1016/j.rser.2017.05.164.CrossRefGoogle Scholar
  23. [23]
    SCHILLING J, LAMPE M, GROSS J, BARDOW A. 1-stage CoMT-CAMD: An approach for integrated design of ORC process and working fluid using PC-SAFT [J]. Chemical Engineering Science, 2017, 159: 217–230. DOI: 10.1016/j.ces.2016.04.048.CrossRefGoogle Scholar
  24. [24]
    LUKAWSKI M Z, DIPIPPO R, TESTER J W. Molecular property methods for assessing efficiency of organic Rankine cycles [J]. Energy, 2018, 142: 108–120. DOI: 0.1016/ j.energy.2017.09.140.CrossRefGoogle Scholar
  25. [25]
    LAMPE M, STAVROU M, SCHILLING J, SAUER E, GROSS J, BARDOW A. Computer-aided molecular design in the continuous-molecular targeting framework using group-contribution PC-SAFT [J]. Computers & Chemical Engineering, 2015, 81: 278–287. DOI: 10.1016/j.compchemeng.2015.04.008.CrossRefGoogle Scholar
  26. [26]
    PALMA-FLORES O, FLORES-TLACUAHUAC A, CANSECO-MELCHOR G. Optimal molecular design of working fluids for sustainable low-temperature energy recovery [J]. Computers & Chemical Engineering, 2015, 72: 334–349. DOI: 10.1016/j.compchemeng.2014.04.009.CrossRefGoogle Scholar
  27. [27]
    LAMPE M, STAVROU M, BUCKER HM, GROSS J, BARDOW A. Simultaneous optimization of working fluid and process for organic rankine cycles using PC-SAFT [J]. Industrial & Engineering Chemistry Research, 2014, 53: 8821–8830. DOI: 10.1021/ie5006542.CrossRefGoogle Scholar
  28. [28]
    PAPADOPOULOS A I, STIJEPOVIC M, LINKE P, SEFERLIS P, VOUTETAKIS S. Toward optimum working fluid mixtures for organic rankine cycles using molecular design and sensitivity analysis [J]. Industrial & Engineering Chemistry Research, 2013, 52: 12116–12133. DOI: 10.1021/ie400968j.CrossRefGoogle Scholar
  29. [29]
    LEMMON E W, MCLINDEN M O. NIST standard reference database 23, NIST reference fluid thermodynamic and transport properties&REFPROP, version 9.1 [M]. Gaithersburg: National Institute of Standards and Technology, 2013.Google Scholar
  30. [30]
    HEBERLE F, BRUGGEMANN D. Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation [J]. Applied Thermal Engineering, 2010, 30: 1326–1332. DOI: 10.1016/ j.applthermaleng.2010.02.012.CrossRefGoogle Scholar
  31. [31]
    REIS M M L, GALLO W L R. Study of waste heat recovery potential and optimization of the power production by an organic Rankine cycle in an FPSO unit [J]. Energy Conversion and Management, 2018, 157: 409–422. DOI: 10.1016/j.enconman.2017.12.015.CrossRefGoogle Scholar
  32. [32]
    RAHBAR K, MAHMOUD S, ADADAH R K, MOAZAMI N. Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine [J]. Energy Conversion and Management, 2015, 91: 186–198. DOI:10.1016/j.enconman.2014.12.003.CrossRefGoogle Scholar
  33. [33]
    KANG S H. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid [J]. Energy, 2012, 41: 514–524. DOI: 10.1016/j.energy.2012.02.035.CrossRefGoogle Scholar
  34. [34]
    DELGADO-TORRES A M, GARCIA-RODRIGUEZ L. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC) [J]. Energy Conversion and Management, 2010, 51: 2846–2856. DOI: 10.1016/j.enconman.2010.06.022.CrossRefGoogle Scholar
  35. [35]
    WANG Dong-xiang, LING Xiang, PENG Hao, LIU Lin, TAO Lan-lan. Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation [J]. Energy, 2013, 50: 343–352. DOI: 10.1016/j.energy.2012.11.010.CrossRefGoogle Scholar
  36. [36]
    BRAIMAKIS K, PREIBINGER M, BRUGGEMANN D, KARELLAS S, PANOPOULOS K. Low grade waste heat recovery with subcritical and supercritical organic Rankine cycle based on natural refrigerants and their binary mixtures [J]. Energy, 2015, 88: 80–92. DOI: 10.1016/j.energy.2015.03.092.CrossRefGoogle Scholar
  37. [37]
    YU Guo-peng, SHU Ge-qun, TIAN Hua, WEI Hai-qiao, LIU Li-na. Simulation and thermodynamic analysis of a bottoming organic rankine cycle (ORC) of diesel engine (DE) [J]. Energy, 2013, 51: 281–290. DOI: 10.1016/j.energy. 2012.10.054.CrossRefGoogle Scholar
  38. [38]
    SHU Ge-qun, LI Xiao-ning, TIAN Hua, LIANG Xing-yu, WEI Hai-qiao, WANG X. Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle [J]. Applied Energy, 2014, 119: 204–217. DOI: 10.1016/j.apenergy.2013.12.056.CrossRefGoogle Scholar
  39. [39]
    AHMADI P, DINCER I, ROSEN M A. Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration [J]. Energy Conversion and Management, 2012, 64: 447–453. DOI: 10.1016/j.enconman. 2012.06.001.CrossRefGoogle Scholar
  40. [40]
    YANG Kai, ZHANG Hong-guang, SONG Song-song, YANG Fu-bin, LIU Hao, ZHAO Gung-yao, ZHANG Jian, YAO Bao-feng. Effects of degree of superheat on the running performance of an organic Rankine cycle (ORC) waste heat recovery system for diesel engines under various operating conditions [J]. Energies, 2014, 7: 2123–2145. DOI: 10.3390/en7042123.CrossRefGoogle Scholar
  41. [41]
    ROY J P, MISHRAM K, MISRAA. Performance analysis of an organic Rankine cycle with superheating under different heat source temperature conditions [J]. Applied Energy, 2011, 88: 2995–3004. DOI: 10.1016/j.apenergy.2011.02.042.CrossRefGoogle Scholar
  42. [42]
    ZHOU Nai-jun, WANG Xiao-yuan, CHEN Zhuo, WANG Zhi-qi. Experimental study on organic Rankine cycle for waste heat recovery from low-temperature flue gas [J]. Energy, 2013, 55: 216–225. DOI: 10.1016/j.energy. 2013.03.047.CrossRefGoogle Scholar
  43. [43]
    BAO Jun-jiang, ZHAO Li. A review of working fluid and expander selections for organic Rankine cycle [J]. Renewable and Sustainable Energy Reviews, 2013, 24: 325–342. DOI: 10.1016/j.rser.2013.03.040.CrossRefGoogle Scholar
  44. [44]
    LIU B T, CHIEN K H, WANG C C. Effect of working fluids on organic Rankine cycle for waste heat recovery [J]. Energy, 2004, 29: 1207–1217. DOI: 10.1016/j.energy.2004.01.004.CrossRefGoogle Scholar
  45. [45]
    XU Jin-liang, YU Chao. Critical temperature criterion for selection of working fluids for subcritical pressure organic Rankine cycles [J]. Energy, 2014, 74: 719–733. DOI: 10.1016/j.energy.2014.07.038.CrossRefGoogle Scholar
  46. [46]
    KUO C R, HSU S W, CHANG K H, WANG C C. Analysis of a 50 kW organic Rankine cycle system [J]. Energy, 2011, 36: 5877–5885. DOI: 10.1016/j.energy.2011.08.035.CrossRefGoogle Scholar
  47. [47]
    RAYEGAN R, TAO Y X. A procedure to select working fluids for solar organic rankine cycles (ORCs) [J]. Renewable Energy, 2011, 36: 659–670. DOI: 10.1016/ j.renene.2010.07.010.CrossRefGoogle Scholar
  48. [48]
    BRASZ J, HOLDMANN G. Power production from a moderate-temperature geothermal resource [J]. Transactions-Geothermal Resources Council, 2005, 29: 729–733. DOI: 10.1016/j.esd.2011.06.002.Google Scholar
  49. [49]
    INVERNIZZI C, IORA P, SILVA P. Bottoming micro-Rankine cycles for micro-gas turbines [J]. Applied Thermal Engineering, 2007, 27: 100–110. DOI: 10.1016/ j.applthermaleng.2006.05.003.CrossRefGoogle Scholar
  50. [50]
    HUNG T C. Waste heat recovery of organic Rankine cycle using dry fluids [J]. Energy Conversion and Management, 2001, 42: 539–553. DOI: 10.1016/SO196-8904(00)00081-9.CrossRefGoogle Scholar
  51. [51]
    HE Chao, LIU Chao, ZHOU Meng-tong, XIE Hui, XU Xiao-xiao, WU Shuang-ying, LI You-rong. A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources [J]. Energy, 2014, 68: 283–291. DOI: 10.1016/j.energy.2014.02.050.CrossRefGoogle Scholar
  52. [52]
    JUNG D, PARK S, MIN K. Selection of appropriate working fluids for Rankine cycles used for recovery of heat from exhaust gases of ICE in heavy-duty series hybrid electric vehicles [J]. Applied Thermal Engineering, 2015, 81: 338–345. DOI: 10.1016/j.applthermaleng.2015.02.002.CrossRefGoogle Scholar
  53. [53]
    STIJEPOVIC M Z, LINKE P, PAPADOPOULOS A I, GRUJIC A S. On the role of working fluid properties in organic Rankine cycle performance [J]. Applied Thermal Engineering, 2012, 36: 406–413. DOI: 10.1016/ j.applthermaleng.2011.10.057.CrossRefGoogle Scholar
  54. [54]
    DRESCHER U, BRUGGEMANN D. Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants [J]. Applied Thermal Engineering, 2007, 27: 223–228. DOI: 10.1016/j.applthermaleng.2006.04.024.CrossRefGoogle Scholar
  55. [55]
    LUKAWSKI M Z, TESTER J W, DIPIPPO R. Impact of molecular structure of working fluids on performance of organic Rankine cycles (ORCs) [J]. Sustainable Energy & Fuels, 2017, 1: 1098–1111. DOI: 10.1039/C6SE00064A.CrossRefGoogle Scholar
  56. [56]
    MA Wei-wu, LIU Tao, MIN Rui, LI Min. Effects of physical and chemical properties of working fluids on thermodynamic performances of medium-low temperature organic Rankine cycles (ORCs) [J]. Energy Conversion and Management, 2018, 171:742–749. DOI: 10.1016/j.enconman.2018.06.032.CrossRefGoogle Scholar
  57. [57]
    TU C H, LIU C P. Group-contribution estimation of the enthalpy of vaporization of organic compounds [J]. Fluid Phase Equilibria, 1996, 121: 45–65. DOI: 10.1016/ 0378-3812(96)03008-7.CrossRefGoogle Scholar
  58. [58]
    JOBACK K G, REID R C. Estimation of pure-component properties from group-contributions [J]. Chemical Engineering Communications, 2007, 57: 233–243. DOI: 10.1080/00986448708960487.CrossRefGoogle Scholar
  59. [59]
    POLING B E, PRAUSNITZ J M, O'CONNELL J P. The properties of gas and liquids [J]. Journal of the American Chemical Society, 2001, 123(27): 6745–6745. DOI: 10.1021/ja0048634.Google Scholar
  60. [60]
    LI Min, ZHAO Bing-xiong. Analytical thermal efficiency of medium-low temperature organic Rankine cycles derived from entropy-generation analysis [J]. Energy, 2016, 106: 121–130. DOI: 10.1016/j.energy.2016.03.054.CrossRefGoogle Scholar
  61. [61]
    MA Wei-wu, FANG Song, SU Bo, XUE Xin-pei, LI Min. Second-law-based analysis of vapor-compression refrigeration cycles: Analytical equations for COP and new insights into features of refrigerants [J]. Energy Conversion and Management, 2017, 138: 426–434. DOI: 10.1016/j.enconman.2017.02.017.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Energy Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Changsha Institute of Mining ResearchChangshaChina

Personalised recommendations